Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển chọn 259 bài toán tọa độ trong không gian

Tài liệu gồm 130 trang tuyển chọn 259 bài toán tọa độ trong không gian giúp học sinh học tốt chủ đề phương pháp tọa độ trong không gian Oxyz thuộc phần Hình học 12 chương 3 và ôn tập hướng đến kỳ thi THPT Quốc gia 2019 môn Toán. Các bài toán phương pháp tọa độ trong không gian Oxyz có trong tài liệu đều được biên soạn ở dạng trắc nghiệm khách quan với 04 lựa chọn và được phân loại theo từng đơn vị bài học: phương pháp tọa độ trong không gian, mặt cầu, phương trình mặt phẳng, phương trình đường thẳng. Tất cả các bài toán phương pháp tọa độ trong không gian Oxyz có trong tài liệu đều có đáp án và lời giải chi tiết. [ads] Trích dẫn tài liệu tuyển chọn 259 bài toán tọa độ trong không gian : + Trong không gian với hệ toạ độ Oxyz, cho A(1;0;0), B(0;1;0), C(0;0;1), D(1;1;1). Trong các mệnh đề sau, mệnh đề nào sai? A. Bốn điểm A, B, C, D không đồng phẳng. B. Tam giác ABD là tam giác đều. C. AB vuông góc với CD. D. Tam giác BCD là tam giác vuông. + Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD biết A(0;1;-1), B(1;1;2), C(1;-1;0), D(0;0;1). Viết phương trình mặt phẳng (a) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AEFG và EFGBCD biết tỷ số thể tích của AEFG và tứ diện bằng 1/27. + Trong không gian với hệ toạ độ Oxyz, cho 3 điểm A(1;3;2), B(1;2;1), C(1;1;3). Viết phương trình đường thẳng Δ đi qua trọng tâm G của tam giác ABC và vuông góc với mặt phẳng (ABC). Một học sinh làm như sau: Bước 1: Toạ độ trọng tâm G của tam giác ABC là: G (1;2;2). Bước 2: Vectơ pháp tuyến của mặt phẳng (ABC) là: n = [AB,AC] = (-3;1;0). Bước 3: Phương trình tham số của đường thẳng Δ: x = 1 – 3t, y = 2 + t, z = 2. Bài giải trên đúng hay sai? Nếu sai thì sai ở bước nào? A. Đúng. B. Sai ở bước 1. C. Sai ở bước 2. D. Sai ở bước 3.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm tọa độ trong không gian
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tọa độ trong không gian, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Bên cạnh tài liệu tọa độ trong không gian dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tọa độ trong không gian: A. LÝ THUYẾT 1. Hệ trục tọa độ trong không gian. 2. Tọa độ của vectơ. 3. Tọa độ của điểm. 4. Tích có hướng của hai vectơ. 5. Một vài thao tác sử dụng máy tính bỏ túi (Casio Fx570 Es Plus, Casio Fx570 Vn Plus, Vinacal 570 Es Plus). B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách, một chủ đề rất quan trọng trong chương trình Hình học 11 chương 3. Bên cạnh tài liệu góc và khoảng cách dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách: A. KIẾN THỨC CƠ BẢN I. GÓC 1. Góc giữa hai mặt phẳng. 2. Góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng. II. KHOẢNG CÁCH 1. Khoảng cách từ một điểm đến mặt phẳng, khoảng cách giữa hai mặt phẳng song song. 2. Khoảng cách từ một điểm đến một đường thẳng – khoảng cách giữa hai đường thẳng. B. KỸ NĂNG CƠ BẢN + Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến mặt phẳng; biết cách khoảng cách giữa hai mặt phẳng song song. + Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến một đường thẳng; biết cách tính khoảng cách giữa hai đường thẳng song song; khoảng cách giữa hai đường thẳng chéo nhau; khoảng cách từđường thẳng đến mặt phẳng song song. + Nhớ và vận dụng được công thức góc giữa hai đường thẳng; góc giữa đường thẳng và mặt phẳng; góc giữa hai mặt phẳng. + Áp dụng được góc và khoảng cách vào các bài toán khác. C. BÀI TẬP TRẮC NGHIỆM
Xác định tâm, bán kính, diện tích và thể tích của mặt cầu
Tài liệu gồm 12 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán xác định tâm, bán kính, diện tích và thể tích của mặt cầu, được phát triển dựa trên câu 14 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu xác định tâm, bán kính, diện tích và thể tích của mặt cầu: A. KIẾN THỨC CẦN NHỚ 1. Phương trình mặt cầu dạng chính tắc Cho mặt cầu có tâm I(a;b;c) có bán kính R. Khi đó phương trình chính tắc của mặt cầu là (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. 2. Phương trình mặt cầu dạng khai triển Phương trình mặt cầu dạng khai triển là (S): x^2 + y^2 + z^2 – 2ax – 2by – 2cz + d = 0. Khi đó mặt cầu có có tâm I(a;b;c), bán kính R = √(a^2 + b^2 + c^2 – d) với a^2 + b^2 + c^2 – d > 0. B. BÀI TẬP MẪU 1. Đề bài : Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu: (S): (x + 1)^2 + (y – 2)^2 + (z – 1)^2 = 9. Tìm tọa độ tâm I và tính bán kính R của (S). 2. Phân tích hướng dẫn giải a. Dạng toán: Đây là dạng toán sử dụng tính chất để xác định tâm và bán kính của mặt cầu. b. Hướng giải: + Bước 1: Dựa trên phương trình mặt cầu dạng chính tắc tìm tâm và bán kính của mặt cầu. + Bước 2: Mặt cầu (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2 có tâm I(a;b;c) và bán kính R. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN (có đáp án và lời giải chi tiết).
Bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ
Tài liệu gồm 13 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT 2020, hướng dẫn giải bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ, được phát triển dựa trên câu 13 đề thi tham khảo THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ: 1. Cho điểm M(x;y;z): Hình chiếu của điểm M trên Ox là M1(x;0;0); Hình chiếu của điểm M trên Oy là M2(0;y;0); Hình chiếu của điểm M trên Oz là M3(0;0;z); Hình chiếu của điểm M trên (Oxy) là M4(x;y;0); Hình chiếu của điểm M trên (Oyz) là M5(0;y;z); Hình chiếu của điểm trên (Ozx) là M6(x;0;z). 2. Tìm hình chiếu của điểm A trên mặt phẳng (α). + Viết phương trình đường thẳng d đi qua A và vuông góc với (α). + Hình chiếu H của điểm A là giao điểm của đường thẳng d và (α). [ads] 3. Tìm hình chiếu d’ của đường thẳng d trên mặt phẳng (α). Cách 1 : – Nếu đường thẳng d song song với (α) thì d // d’. + Lấy điểm M thuộc đường thẳng d và tìm hình chiếu M’ của điểm M trên (α). + Đường thẳng d’ đi qua M’ và song song với đường thẳng d. – Nếu đường thẳng d cắt (α) tại M. + Lấy điểm N thuộc đường thẳng d và tìm hình chiếu N’ của N trên (α). + Đường thẳng d’ đi qua hai điểm là M và N’. Cách 2 : + Viết phương trình mặt phẳng (β) chứa đường thẳng d và vuông góc với (α). + Khi đó đường thẳng d’ là giao tuyến của hai mặt phẳng (α) và (β). 4. Tìm hình chiếu A’ của A trên đường thẳng d. Cách 1 : + Viết phương trình mặt phẳng (P) chứa A và vuông góc với d. + Hình chiếu A’ là giao điểm của d và (P). Cách 2 : + Tìm tọa độ điểm A’ theo tham số t (A’ thuộc d). + Lập phương trình AA’.ud = 0. Giải phương trình tìm t suy ra tọa độ điểm A’. 5. Tìm điểm M’ đối xứng với M qua (P). + Tìm hình chiếu H của M trên (P) (khi đó H là trung điểm MM’). + Áp dụng công thức tính tọa độ trung điểm suy ra tọa độ điểm M’.