Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán thể tích khối đa diện thường gặp trong kỳ thi THPTQG

giới thiệu đến quý thầy, cô giáo cùng các em học sinh khối 12 tài liệu tuyển tập các dạng câu hỏi và bài tập trắc nghiệm thể tích khối đa diện thường gặp trong đề thi THPT Quốc gia môn Toán. Tài liệu gồm 95 trang được tổng hợp bởi thầy Nguyễn Bảo Vương tuyển chọn 151 câu trắc nghiệm thể tích khối đa diện và các bài toán liên quan có đáp án và lời giải chi tiết từ các đề thi thử THPT Quốc gia môn Toán, đề tham khảo và đề minh họa THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Mục lục tài liệu các dạng toán thể tích khối đa diện thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1 .THỂ TÍCH KHỐI CHÓP + Dạng 1.1 Biết chiều cao và diện tích đáy (Trang 2). + Dạng 1.2 Cạnh bên vuông góc với đáy (Trang 2). + Dạng 1.3 Mặt bên vuông góc với đáy (Trang 5). + Dạng 1.4 Biết hình chiếu của đỉnh lên đáy (Trang 6). + Dạng 1.5 Thể tích khối chóp đều (Trang 7). + Dạng 1.6 Thể tích khối chóp khác (Trang 8). Dạng 2 . THỂ TÍCH KHỐI LĂNG TRỤ + Dạng 2.1 Biết chiều cao và diện tích đáy (Trang 9). + Dạng 2.2 Thể tích khối lăng trụ đứng (Trang 10). + Dạng 2.3 Thể tích khối lăng trụ xiên (Trang 12). Dạng 3 . THỂ TÍCH KHỐI ĐA DIỆN KHÁC Dạng 4 . TỈ SỐ THỂ TÍCH + Dạng 4.1 Tỉ số thể tích của khối chóp (Trang 16). + Dạng 4.2 Tỉ số thể tích các khối đa diện (Trang 16). + Dạng 4.3 Ứng dụng tỉ số thể tích để tìm thể tích (Trang 18). Dạng 5 . BÀI TOÁN THỰC TẾ VÀ BÀI TOÁN CỰC TRỊ [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1 .THỂ TÍCH KHỐI CHÓP + Dạng 1.1 Biết chiều cao và diện tích đáy (Trang 23). + Dạng 1.2 Cạnh bên vuông góc với đáy (Trang 23). + Dạng 1.3 Mặt bên vuông góc với đáy (Trang 31). + Dạng 1.4 Biết hình chiếu của đỉnh lên đáy (Trang 36). + Dạng 1.5 Thể tích khối chóp đều (Trang 38). + Dạng 1.6 Thể tích khối chóp khác (Trang 43). Dạng 2 . THỂ TÍCH KHỐI LĂNG TRỤ + Dạng 2.1 Biết chiều cao và diện tích đáy (Trang 48). + Dạng 2.2 Thể tích khối lăng trụ đứng (Trang 48). + Dạng 2.3 Thể tích khối lăng trụ xiên (Trang 53). Dạng 3 . THỂ TÍCH KHỐI ĐA DIỆN KHÁC Dạng 4 . TỈ SỐ THỂ TÍCH + Dạng 4.1 Tỉ số thể tích của khối chóp (Trang 68). + Dạng 4.2 Tỉ số thể tích các khối đa diện (Trang 70). + Dạng 4.3 Ứng dụng tỉ số thể tích để tìm thể tích (Trang 78). Dạng 5 . BÀI TOÁN THỰC TẾ VÀ BÀI TOÁN CỰC TRỊ Phần lời giải chi tiết các bài toán được trình bày logic, rõ ràng, sẽ giúp các em nắm được phương pháp tư duy giải các bài toán trắc nghiệm thể tích khối đa diện, từ đó học tốt hơn chương trình Hình học 12 chương 1, cũng như ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán.

Nguồn: toanmath.com

Đọc Sách

Bài toán cực trị hình học không gian và các khối lồng nhau - Trần Đình Cư
Tài liệu gồm 31 trang hướng dẫn phương pháp giải dạng toán cực trị hình học không gian và các khối lồng nhau kèm theo bài tập minh họa có lời giải chi tiết. Trong quá trình tìm kiếm lời giải nhiều bài toán hình học, sẽ rất có lợi nếu chúng ta xem xét các phần tử biên, phần tử giới hạn nào đó, tức là phần tử mà tại đó mỗi đại lượng hình học có thể nhận giá trị lớn nhất hoặc giá trị nhỏ nhất, chẳng hạn như cạnh lớn nhất, cạnh nhỏ nhất của một tam giác; góc lớn nhất hoặc góc nhỏ nhất của một đa giác … Những tính chất của các phần tử biên, phần tử giới hạn nhiều khi giúp chúng ta tìm được lời giải thu gọn của bài toán. Phương pháp tiếp cận như vậy tới lời giải bài toán được gọi là nguyên tắc cực hạn. Như vậy bài toán cực trị hình học là cần thiết trong không gian, nó thường xuất hiện ở những câu hỏi khó trong phần thi trắc nghiệm THPT Quốc gia. [ads] Tóm tắt nội dung tài liệu : 1. Phương pháp Cơ sở của phương pháp cần kết hợp giữa các quan điểm tìm cực trị như sau 1. Sử dụng bất đẳng thức thông dụng 2. Bất đẳng thức cauchy cho các biến đại lượng không âm. 3. Bất đẳng thức schwartz cho các biến đại lượng tùy ý. 4. Sử dụng tính bị chặn của hàm lượng giác 5. Sử dụng đạo hàm để lập bảng biến thiên 6. Sử dụng các nguyên lý hình học cực hạn Một số ví dụ mẫu Câu hỏi và bài tập trắc nghiệm có đáp án và lời giải chi tiết
Các dạng toán về góc trong hình học không gian - Trần Đình Cư
Tài liệu gồm 23 trang trình bày các dạng toán về góc, phương pháp giải và bài tập trắc nghiệm có đáp án và lời giải chi tiết. 3 dạng toán về góc trong hình học không gian gồm: + Dạng 1. Góc giữa hai mặt phẳng + Dạng 2. Góc giữa hai đường thẳng + Dạng 3. Góc giữa đường thẳng và mặt phẳng [ads] Trích dẫn tài liệu : + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại AD, với AB = 3a, AD = 2a, DC = a. Hình chiếu vuông góc của S xuống mặt phẳng (ABCD) là H thuộc AB với AH = 2HB. Biết SH = 2a, cosin của góc giữa SB và AC là? + Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, góc A = 60 độ. Chân đường vuông góc hạ từ B’ xuống mặt phẳng (ABCD) trùng với giao điểm của hai đường chéo của đáy ABCD. Cho BB’ = a.Tính góc giữa cạnh bên và đáy. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, CD = 2a, AD = AB = a. Hình chiếu vuông góc của S trên mặt đáy là trung điểm H của đoạn AB. Khoảng cách từ điểm H đến mặt phẳng (SCD) bằng a√2/3. Tan của góc giữa đường thẳng BC và mặt phẳng (SCD) bằng? + Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B có AB = BC = a; SA ⊥ (ABC). Biết mặt phẳng (SBC) tạo với đáy một góc 60 độ. Cosin góc tạo bởi đường thẳng SC và mặt phẳng (ABC) là? + Cho khối chóp S.ABC có đáy là tam giác cân tại A có AB = AC = 4a, góc BAC = 120 độ. Gọi M là trung điểm của BC, N là trung điểm của AB, ΔSAM là tam giác cân tại S và thuộc mặt phẳng vuông góc với đáy. Biết SA = a√2. Góc giữa SN và mặt phẳng (ABC) là?
Các dạng toán khoảng cách trong hình học không gian - Trần Đình Cư
Tài liệu gồm 70 trang trình bày các dạng toán tính khoảng cách trong hình học không gian, phương pháp giải và bài tập trắc nghiệm có lời giải cho tiết. + DẠNG 1. KHOẢNG CÁCH TỪ 1 ĐIỂM ĐẾN ĐƯỜNG THẲNG Việc dựng hình chiếu của một điểm trên đường thẳng trong không gian, ta có thể làm theo 2 cách sau: + Dựng mặt phẳng đi qua điểm và đường thẳng đã cho. Rồi trên mặt phẳng đó qua điểm đã cho dựng đoạn vuông góc từ điểm tới đường thẳng. + Dựng một mặt phẳng đi qua điểm đã cho và vuông góc với đường thẳng, lúc đó giao điểm của đường thẳng với mặt phẳng vừa dựng chính là hình chiếu của điểm trên đường thẳng. Sau khi đã xác định được khoảng cách cần tính, ta dùng các hệ thức lượng trong tam giác, đa giác, đường tròn … để tính toán. [ads] + DẠNG 2. KHOẢNG CÁCH TỪ MỘT ĐIỂM ĐẾN MẶT PHẲNG + DẠNG 3. KHOẢNG CÁCH GIỮA HAI MẶT PHẲNG SONG SONG Việc tính khoảng cách giữa một đường thẳng và một mặt phẳng song song với nó, hoặc tính khoảng cách giữa hai mặt phẳng song song đều quy về việc tính khoảng cách từ điểm đến mặt phẳng. Cần lưu ý việc chọn điểm trên đường hoặc trên mặt sao cho việc xác định khoảng cách được đơn giản nhất. + DẠNG 4. KHOẢNG CÁCH HAI ĐƯỜNG THẲNG CHÉO NHAU
Lý thuyết khối đa diện - Trần Đình Cư
Tài liệu gồm 26 trang gồm lý thuyết, các dạng toán và bài tập trắc nghiệm có lời giải chi tiết chuyên đề khối đa diện trong chương trình Hình học 12 chương 1. DẠNG 1. KHÁI NIỆM KHỐI ĐA DIỆN I. KHÁI NIỆM VỀ HÌNH ĐA DIỆN VÀ KHỐI ĐA DIỆN 1. Khái niệm về hình đa diện Hình đa diện (gọi tắt là đa diện) (H) là hình được tạo bởi một số hữu hạn các đa giác thỏa mãn hai tính chất trên. Mỗi đa giác như thế được gọi là các mặt của đa diện. Các đỉnh các cạnh của đa giác ấy theo thứ tự được gọi là các đỉnh, cạnh của đa diện. 2. Khái niệm về khối đa diện Khối đa diện là phần không gian được giới hạn bới một hình đa diện (H), kể cả hình đa diện đó. Những điểm không thuộc khối đa diện được gọi là điểm ngoài của khối đa diện. Những điểm thuộc khối đa diện nhưng không thuộc hình đa diện giới hạn khối đa diện ấy được gọi là điểm trong của khối đa diện. Tập hợp các điểm trong được gọi là miền trong, tập hợp các điểm ngoài được gọi là miền ngoài khối đa diện. [ads] II. HAI HÌNH BẲNG NHAU 1. Phép dời hình trong không gian và sự bằng nhau giữa các khối đa diện + Trong không gian quy tắc đặt tương ứng mỗi điểm M với điểm M’ xác định duy nhất được gọi là một phép biến hình trong không gian. + Phép biến hình trong không gian được gọi là phép dời hình nếu nó bảo toàn khoảng cách giữa hai điểm tùy ý. 2. Hai hình bằng nhau: Hai hình được gọi là bằng nhau nếu có một phép dời hình biến hình này thành hình kia. DẠNG 2. KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU I. KHỐI ĐA DIỆN LỒI Khối đa diện (H) được gọi là khối đa diện lồi nếu đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Khi đó đa diện giới hạn (H) được gọi là đa diện lồi. Công thức ƠLE: Trong một đa diện lồi nếu gọi Đ là số đỉnh, C là số cạnh, M là số mặt Đ – C + M = 2. II. KHỐI ĐA DIỆN ĐỀU Khối đa diện đều là khối đa diện lồi có các tính chất sau: + Mỗi mặt của nó là một đa giác đều p cạnh + Mỗi đỉnh của nó là đỉnh chung của đúng q mặt Khối đa diện đều như vậy được gọi là khối đa diện đều loại {p;q}.