Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hà Giang

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hà Giang Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán THCS cấp tỉnh Hà Giang năm 2022-2023 Đề thi học sinh giỏi Toán THCS cấp tỉnh Hà Giang năm 2022-2023 Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng nhau tìm hiểu về đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Hà Giang. Đề thi bao gồm các bài toán thú vị và thách thức để kiểm tra kiến thức và kỹ năng của các em. Dưới đây là một số câu hỏi trong đề thi: 1. Cho Parabol (P): y = x2 và đường thẳng d: y = 2x - m. Hãy tìm giá trị của m sao cho đường thẳng d cắt parabol (P) tại hai điểm phân biệt với hoành độ x1, x2 thỏa mãn x12 + x22 = 5. 2. Cho x, y, z là ba số thực dương thỏa mãn: x + y + z = 23 và xy + yz + zx = 4. Hãy chứng minh rằng? 3. Trong tam giác ABC vuông tại A, với AB < AC và M là trung điểm của cạnh BC. Gọi P là một điểm bất kì trên đoạn AM. K, L lần lượt là các điểm nằm trên tia BP, CP sao cho AKB = ABC và ALC = ACB. Đường tròn (I) ngoại tiếp tam giác BPL cắt đường thẳng AB tại điểm F. Đường tròn (J) ngoại tiếp tam giác CPK cắt đường thẳng AC tại điểm E. Hãy chứng minh rằng: a) Tam giác BKA và BAP đồng dạng. b) Đường tròn IJ song song với đường FE. Hy vọng đề thi này sẽ giúp các em học sinh ôn tập và nâng cao kiến thức Toán của mình. Chúc quý thầy cô giáo và các em học sinh một kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 9 THCS năm 2018 - 2019 sở GD và ĐT Thái Bình
Đề thi chọn HSG Toán 9 THCS năm 2018 – 2019 sở GD và ĐT Thái Bình gồm 1 trang với 7 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), đề nhằm tuyển chọn các em học sinh giỏi Toán 9 khối THCS để thành lập đội tuyển tham dự kỳ thi học sinh giỏi Toán 9 cấp Quốc gia, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn HSG Toán 9 THCS năm 2018 – 2019 sở GD và ĐT Thái Bình : + Cho tam giác ABC vuông tại A, đường cao AH, gọi I, J, K lần lượt là tâm các đường tròn nội tiếp các tam giác ABC, ABH, ACH. Gọi giao điểm của các đường thẳng AJ, AK với cạnh BC lần lượt là E và F. a. Chứng minh: I là tâm đường tròn ngoại tiếp tam giác AEF. b. Chứng minh: đường tròn ngoại tiếp tam giác IJK và đường tròn nội tiếp tam giác ABC có bán kính bằng nhau. + Tìm tất cả các bộ số nguyên dương (x;y;z) sao cho (x + y√2019)(y + z√2019) là số hữu tỉ và x^2 + y^2 + z^2 là số nguyên tố. [ads] + Cho tam giác ABC có ba góc nhọn, vẽ các đường cao BE và AD. Gọi H là trực tâm và G là trọng tâm tam giác ABC. a. Chứng minh: nếu HG // BC thì tanB.tanC = 3. b. Chứng minh: tanA.tanB.tanC = tanA + tanB + tanC.
Đề thi HSG Toán 9 năm 2018 - 2019 phòng GDĐT thành phố Thái Nguyên
Đề thi HSG Toán 9 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi chọn HSG Toán 9 năm 2018 - 2019 phòng GDĐT Con Cuông - Nghệ An
Đề thi chọn HSG Toán 9 năm 2018 – 2019 phòng GD&ĐT Con Cuông – Nghệ An gồm có 01 trang với 05 bài toán tự luận, học sinh làm bài trong 150 phút, cán bộ coi thi không giải thích gì thêm, thí sinh không được sử dụng máy tính cầm tay, đề thi có lời giải chi tiết kèm thang chấm điểm. Trích dẫn đề thi chọn HSG Toán 9 năm 2018 – 2019 phòng GD&ĐT Con Cuông – Nghệ An : + Cho nửa đường tròn tâm O đường kính AB. Trên cùng nửa mặt phẳng bờ AB vẽ các tiếp tuyến Ax, By. Lấy điểm M bất kì thuộc nửa đường tròn (M khác A và B). Kẻ MH vuông góc với AB tại H. a) Tính MH biết AH = 3cm, HB = 5cm. b) Qua M kẻ tiếp tuyến với nửa đường tròn cắt Ax, By lần lượt tại C và D. Gọi I là giao điểm của AD và BC. Chứng minh M, I, H thẳng hàng. c) Vẽ đường tròn tâm (O’) nội tiếp tam giác AMB tiếp xúc AB ở K. Chứng minh diện tích S_ΔAMB = AK.KB. [ads] + Cho đường thẳng (d) có phương trình: (m + 1)x + (m – 2)y = 3 (d) (m là tham số). a) Tìm giá trị của m biết đường thẳng (d) đi qua điểm A (-1;-2). b) Tìm m để (d) cắt hai trục tọa độ và tạo thành tam giác có diện tích bằng 9. + Chứng minh rằng với mọi số nguyên n thì n^3 + 3n^2 + 2018n chia hết cho 6.
Đề thi học sinh giỏi cấp huyện Toán 9 năm 2018 - 2019 phòng GDĐT Hoài Nhơn - Bình Định
Đề thi học sinh giỏi cấp huyện Toán 9 năm 2018 – 2019 phòng GD&ĐT Hoài Nhơn – Bình Định được biên soạn theo hình thức tự luận với 05 bài toán, thời gian làm bài 150 phút (không kể thời gian phát đề), kỳ thi được diễn ra vào ngày 01/12/2018 nhằm tuyển chọn các em học sinh lớp 9 giỏi môn Toán đang học tập tại các trường THCS trên địa bàn huyện Hoài Nhơn, tỉnh Bình Định, đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp huyện Toán 9 năm 2018 – 2019 phòng GD&ĐT Hoài Nhơn – Bình Định : + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O), gọi M là trung điểm của cạnh BC, H là trực tâm của tam giác ABC và K là hình chiếu vuông góc của A trên cạnh BC. Tính diện tích của tam giác ABC, biết OM = HK = KM/4 và AM = 30 cm. + Tìm các số nguyên dương có hai chữ số, biết số đó là bội của tích hai chữ số của chính số đó. + Chứng minh rằng số tự nhiên 1.2.3…2017.2018.(1 + 1/2 + 1/3 + … + 1/2017 + 1/2018) chia hết cho 2019.