Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hà Giang

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hà Giang Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán THCS cấp tỉnh Hà Giang năm 2022-2023 Đề thi học sinh giỏi Toán THCS cấp tỉnh Hà Giang năm 2022-2023 Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng nhau tìm hiểu về đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Hà Giang. Đề thi bao gồm các bài toán thú vị và thách thức để kiểm tra kiến thức và kỹ năng của các em. Dưới đây là một số câu hỏi trong đề thi: 1. Cho Parabol (P): y = x2 và đường thẳng d: y = 2x - m. Hãy tìm giá trị của m sao cho đường thẳng d cắt parabol (P) tại hai điểm phân biệt với hoành độ x1, x2 thỏa mãn x12 + x22 = 5. 2. Cho x, y, z là ba số thực dương thỏa mãn: x + y + z = 23 và xy + yz + zx = 4. Hãy chứng minh rằng? 3. Trong tam giác ABC vuông tại A, với AB < AC và M là trung điểm của cạnh BC. Gọi P là một điểm bất kì trên đoạn AM. K, L lần lượt là các điểm nằm trên tia BP, CP sao cho AKB = ABC và ALC = ACB. Đường tròn (I) ngoại tiếp tam giác BPL cắt đường thẳng AB tại điểm F. Đường tròn (J) ngoại tiếp tam giác CPK cắt đường thẳng AC tại điểm E. Hãy chứng minh rằng: a) Tam giác BKA và BAP đồng dạng. b) Đường tròn IJ song song với đường FE. Hy vọng đề thi này sẽ giúp các em học sinh ôn tập và nâng cao kiến thức Toán của mình. Chúc quý thầy cô giáo và các em học sinh một kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 100 đề thi học sinh giỏi môn Toán 9 - Hồ Khắc Vũ
Tài liệu gồm 114 trang tuyển tập 100 đề thi chọn học sinh giỏi môn Toán lớp 9 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi chọn đội tuyển học sinh giỏi Toán 9 năm học 2017 - 2018 trường THCS Trần Mai Ninh - Thanh Hóa (Vòng 1)
Đề thi chọn đội tuyển học sinh giỏi (HSG) Toán 9 năm học 2017 – 2018 trường THCS Trần Mai Ninh – Thanh Hóa (Vòng thi thứ nhất) gồm 5 bài toán tự luận. Trích dẫn đề thi : + Cho hình vuông ABCD, có M và N theo thứ tự là trung điểm của các cạnh AB và BC, nối DN cắt CM tại I. a. Chứng minh: CI.CM = CN.CB b. Chứng minh: DI = 4IN c. Kẻ tia AH vuông góc với DN tại H và tia AH cắt CD tại P. Cho AB = a Tính diện tích tứ giác HICP [ads] + Cho a^2 + b^2 = c^2 + d^2 = 2017 và ac + bd = 0. Tính giá trị biểu thức S = ab + cd. + Cho a, b là các số nguyên dương sao cho: a + 1 và b + 2007 chia hết cho 6. Chứng minh: 4^a + a + b chia hết cho 6. + Cho x, y là các số thực dương thỏa mãn: x + y = (x – y)√xy. Tìm giá trị nhỏ nhất của P = x + y.
Đề thi học sinh giỏi năm học 2017 - 2018 môn Toán 9 phòng Giáo dục và Đào tạo Tiền Hải - Thái Bình
Đề thi học sinh giỏi (HSG) năm học 2017 – 2018 môn Toán 9 phòng Giáo dục và Đào tạo Tiền Hải – Thái Bình gồm 5 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi : + Tìm các số a, b sao cho đa thức f(x) = x^4 + ax^3 + bx – 1 chia hết cho đa thức x^2 – 3x + 2. + Chứng minh rằng : B = 4x(x + y)(x + y + z)(x + z) + y^2.z^2 là một số chính phương với x, y, z là các số nguyên. + Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc với BC tại H. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. [ads] a) Biết AB = 6 cm, HC = 6,4 cm. Tính BC, AC b) Chứng minh: DE^3 = BC.BD.CE c) Đường thẳng kẻ qua B vuông góc với BC cắt HD tại M, đường thẳng kẻ qua C vuông góc với BC cắt HE tại N. Chứng minh M, A, N thẳng hàng d) Chứng minh rằng : BN, CM, DE đồng quy + Cho đa thức f(x) = x^4 + ax^3 + bx^2 + c^x + d (với a, b, c là các số thực). Biết f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị biểu thức A = f(8) – f(-4).
Đề thi chọn học sinh giỏi tỉnh Toán 9 THCS năm học 2016-2017 sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi tỉnh Toán 9 THCS năm học 2016-2017 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O, R). Các đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc CA, F thuộc AB). Tia EF cắt tia CB tại P, AP cắt đường tròn (O,R) tại M (M khác A). [ads] a) Chứng minh rằng: PE.PF = PM.PA và AM vuông góc với HM. b) Cho cạnh BC cố định, điểm A di chuyển trên cung lớn BC. Xác định vị trí của A để diện tích tam giác BHC đạt giá trị lớn nhất. + Cho tam giác ABC có góc A nhọn, nội tiếp đường tròn tâm O. Một điểm I chuyển động trên cung BC không chứa điểm A (I không trùng với B và C). Đường thẳng vuông góc với IB tại I cắt đường thẳng AC tại E, đường thẳng vuông góc với IC tại I cắt đường thẳng AB tại F. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định.