Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 9 cấp tỉnh năm 2020 - 2021 sở GDĐT Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào ngày 16 tháng 12 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn HSG Toán 9 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Thanh Hóa : + Cho đường tròn (I;r) có hai bán kính IE, IF vuông góc với nhau. Kẻ hai tiếp tuyến với đường tròn (I) tại E và F, cắt nhau tại A. Trên tia đối của tia EA lấy điểm B sao cho EB > r, qua B kẻ tiếp tuyến thứ hai với đường tròn (I). D là tiếp điểm, BD cắt tia AF tại C. Gọi K là giao điểm của AI với FD. 1) Chứng minh hai tam giác IAB và FAK đồng dạng. 2) Qua A kẻ đường thẳng vuông góc với BC, cắt FD tại P. Gọi M là trung điểm của AB, MI cắt AC tại Q. Chứng minh tam giác APQ là tam giác cân. 3) Xác định vị trí của điểm B để chu vi tam giác AMQ đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo r. + Cho a, b, c là các số thực đôi một khác nhau thỏa mãn 3 3 3 a a b b c c 1 3 1 3 1 3. Tính giá trị biểu thức 2 2 2 Q a b c. + Cho các số thực dương x, y, z thỏa mãn 2 2 x y xyz xy yz zx 4 2. Tính giá trị lớn nhất của biểu thức P x y z 1 1.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2017 - 2018 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 22 tháng 04 năm 2018. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Lai Châu : + Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh: a) Tứ giác BEFI là tứ giác nội tiếp đường tròn. b) AE.AF = AC2. c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định. + Cho biểu thức với x y 0 0 a) Rút gọn biểu thức A. b) Biết xy = 16. Tìm các giá trị của x, y để A có giá trị nhỏ nhất, tìm giá trị đó. + Tìm số tự nhiên n ≥ 1 sao cho tổng 1! + 2! + 3! + … + n! là một số chính phương.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2017 - 2018 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2017 – 2018 sở GD&ĐT Đồng Tháp gồm 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 25/03/2018.
Đề thi học sinh giỏi Toán 9 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề thi học sinh giỏi Toán 9 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên
Tuyển tập 45 đề thi HSG Toán 9 có lời giải chi tiết
Tài liệu tuyển tập 45 đề thi HSG Toán 9 có lời giải chi tiết từ các trường THPT và cơ sở Giáo dục – Đào tạo trên toàn quốc. Các đề thi theo hình thức tự luận, hy vọng bộ đề học sinh giỏi các năm học trước sẽ giúp các em học sinh nắm được cấu trúc đề, nội dung cần ôn tập chuẩn bị cho kỳ thi HSG Toán 9 sắp tới.