Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phú Hòa TP HCM

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Phú Hòa TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học kì 1 Toán lớp 10 năm học 2019 – 2020 trường THPT Phú Hòa, thành phố Hồ Chí Minh, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Phú Hòa – TP HCM : + Một trường THPT có tổng số học sinh khối 10, khối 11 và khối 12 là 1378 học sinh. Tổng số học sinh khối 10 và khối 11 bằng 38/15 số học sinh khối 12. Biết rằng 3 lần số học sinh khối 12 nhiều hơn 2 lần số học sinh khối 10 là 106 học sinh. Hỏi mỗi khối có bao nhiêu học sinh? + Tìm tập xác định của hàm số. + Cho tam giác ABC có AB = 7a, BC = 8a, AC = 9a. a) Tính diện tích tam giác ABC. b) Tính bán kính đường tròn ngoại tiếp tam giác ABC và cos ACB.

Nguồn: sytu.vn

Đọc Sách

Kiểm tra học kì 1 (HK1) lớp 10 môn Toán năm học 2017 2018 trường THPT Phước Vĩnh Bình Dương
Nội dung Kiểm tra học kì 1 (HK1) lớp 10 môn Toán năm học 2017 2018 trường THPT Phước Vĩnh Bình Dương Bản PDF Kiểm tra học kỳ 1 Toán lớp 10 năm học 2017 – 2018 trường THPT Phước Vĩnh – Bình Dương gồm 25 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Tìm mệnh đề sai trong các mệnh đề sau: A. 2 là một số chính phương B. 2 là một số nguyên C. Nếu một tam giác có ba cạnh bằng nhau thì tam giác đó đều D. 4 là một số chính phương + + Cho phương trình 3x^2 + 2(3m – 1)x + 3m^2 – m + 1 = 0 với m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn x1^2 + x2^2 = 34/9 [ads] + Cho hàm số y = -2x/3 + 1/2 có đồ thị là (d). Mệnh đề nào sau đây là đúng? A. (d) cắt trục hoành tại B(0; 1/2) B. Điểm A(1/2; 1) thuộc đường thẳng (d) C. Hàm số f đồng biến trên R D. Hàm số f nghịch biến trên R File WORD (dành cho quý thầy, cô):
Đề kiểm tra chất lượng học kì 1 (HK1) lớp 10 môn Toán năm học 2017 2018 trường THPT Giao Thủy B Nam Định
Nội dung Đề kiểm tra chất lượng học kì 1 (HK1) lớp 10 môn Toán năm học 2017 2018 trường THPT Giao Thủy B Nam Định Bản PDF Đề kiểm tra chất lượng HK1 Toán lớp 10 năm học 2017 – 2018 trường THPT Giao Thủy B – Nam Định gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm 60 phút, đề thi có đáp án và lời giải chi tiết . Bạn đọc có thể cập nhật thường xuyên các đề thi HK1 Toán lớp 10
Đề kiểm tra định kỳ lần 1 lớp 10 môn Toán năm học 2017 2018 sở GD và ĐT Bắc Ninh
Nội dung Đề kiểm tra định kỳ lần 1 lớp 10 môn Toán năm học 2017 2018 sở GD và ĐT Bắc Ninh Bản PDF Đề kiểm tra định kỳ lần 1 Toán lớp 10 năm học 2017 – 2018 sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = -x^2 + 2x, gọi đồ thị của hàm số là (P). 1. Lập bảng biến thiên và vẽ đồ thị (P) của hàm số đã cho. 2. Tìm tất cả các giá trị của tham số m để đường thẳng d có phương trình y = -2x + m cắt đồ thị (P) tại hai điểm phân biệt. [ads] + Cho hai tập hợp A = {1, 2, 3, 4, 5, 6, 7}, B = {0, 2, 4, 6, 8, 9}. Tìm các tập hợp A ∩ B và A\B. + Cho hình thang ABCD vuông tại A và D, biết AB = AD = 5cm, CD = 10cm. Gọi M và N lần lượt là trung điểm của AD và CD. a. Chứng minh rằng: vtAM + vtBN = vtAN + vtBM b. Tính |vtMA + vtMC + 2vtMN|
Đề kiểm tra chất lượng học kì 1 (HK1) lớp 10 môn Toán năm 2017- 2018 trường THPT Lê Quý Đôn Hải Dương
Nội dung Đề kiểm tra chất lượng học kì 1 (HK1) lớp 10 môn Toán năm 2017- 2018 trường THPT Lê Quý Đôn Hải Dương Bản PDF Đề kiểm tra chất lượng học kỳ 1 Toán lớp 10 cơ bản năm học 2017- 2018 trường THPT Lê Quý Đôn – Hải Dương gồm 15 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho đồ thị (C) của hàm số y = x^2 – 2x + m và đường thẳng (d): y = 2x + 1. a) Tìm m để (d) cắt (C) tại hai điểm phân biệt A, B. b) Xác định tọa độ trung điểm I của đoạn thẳng AB. [ads] + Gọi B là trung điểm của đoạn thẳng AC. Đẳng thức nào sau đây là đúng? A. vtAB + vtCB = vt0 B. vtBA = vtBC C. Hai véctơ BA và BC cùng hướng D. vtAB + vtBC = vt0 + Cho các vectơ a = (2; -2), b = (1; 4), c = (5; 0). a) Tính u = 3a – 2b + 2c. b) Hãy phân tích vectơ c theo hai vectơ a và b.