Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử tuyển sinh vào năm 2017 môn Toán Phòng GD và ĐT Tam Đảo Vĩnh Phúc lần 1

Nội dung Đề thi thử tuyển sinh vào năm 2017 môn Toán Phòng GD và ĐT Tam Đảo Vĩnh Phúc lần 1 Bản PDF - Nội dung bài viết Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1 Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1 Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1 bao gồm 4 câu hỏi trắc nghiệm và 5 câu tự luận, với đáp án và lời giải chi tiết. Trong đề thi có các bài toán như sau: Hai vòi nước cùng chảy vào một cái bể và trong 5 giờ bể sẽ đầy. Nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì bể sẽ được 2/3 nước. Hỏi nếu mỗi vòi chảy một mình, thì trong bao lâu bể mới đầy? Cho đường tròn (O), M là một điểm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB đến đường tròn (O) với A, B là các tiếp điểm; MPQ là một cát tuyến không đi qua tâm của đường tròn (O), P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB, AQ tương ứng tại R, S. Gọi trung điểm đoạn PQ là N. Chứng minh rằng: a) Các điểm M, A, N, O, B cùng thuộc một đường tròn và bán kính của đường tròn đó. b) PR = RS. Đề thi cung cấp bài toán thú vị, đòi hỏi sự tư duy logic và lập luận chặt chẽ của thí sinh. Hy vọng qua thử sức với đề thi này, các thí sinh có thể nắm vững kiến thức và kỹ năng cần thiết để chuẩn bị cho kỳ thi chính thức sắp tới. Chúc các bạn thành công!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dành cho thí sinh thi chuyên Toán và Tin học) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thái Bình. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Thái Bình : + Cho đa thức bậc ba P(x) thỏa mãn khi chia P(x) cho x − 1; x − 2; x − 3 đều được số dư là 6 và P(−1) = −18. Tìm đa thức P(x). + Cho tam giác ABC vuông tại A với AB = c, AC = b. Vẽ đường tròn tâm O1 đường kính AB và đường tròn tâm O2 đường kính AC. Gọi H là giao điểm thứ hai của hai đường tròn (O1) và (O2). Đường thẳng (d) thay đổi luôn đi qua A cắt các đường tròn (O1) và (O2) lần lượt tại các điểm D, E (không trùng với A) sao cho A nằm giữa D và E. a) Chứng minh rằng đường trung trực của đoạn thẳng DE luôn đi qua một điểm cố định khi đường thẳng (d) thay đổi. b) Xác định vị trí của đường thẳng (d) để diện tích tứ giác BDEC đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó theo b, c. c) Kẻ đường thẳng đi qua trung điểm của đoạn DE và vuông góc với BC tại điểm K. Chứng minh rằng KB2 = BD2 + KH2. + Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (7 − p)(7 + p) chia hết cho 24.
Đề vào lớp 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Hùng Vương - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán và chuyên Tin học) năm học 2023 – 2024 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề vào lớp 10 môn Toán (chuyên) năm 2023 – 2024 trường chuyên Hùng Vương – Phú Thọ : + Bạn An viết lên trên bảng 11 số nguyên dương (không nhất thiết phân biệt) có tổng bằng 30. Chứng minh rằng bạn An có thể xóa đi một số số sao cho các số còn lại trên bảng có tổng bằng 10. + Trên đường tròn tâm O đường kính AB R 2 lấy điểm N sao cho AN R và M là một điểm thay đổi trên cung nhỏ BN (M khác B và N). Gọi I là giao điểm của AM và BN, H là hình chiếu của I trên AB, IH cắt AN tại C, K là điểm đối xứng với N qua AB. a) Chứng minh CM CB CI CH và ba điểm KHM thẳng hàng. b) Gọi P là giao điểm thứ hai của NH và (O). Chứng minh tâm đường tròn ngoại tiếp tam giác HPK thuộc đường thẳng cố định khi M thay đổi. c) Xác định vị trí của điểm M để tổng MB MN đạt giá trị lớn nhất. + Viết lên trên bảng 2023 số 11 2 3 2022 2023. Mỗi bước ta xoá đi 2 số x y bất kì trên bảng rồi viết lên bảng số 1 xy x y (các số còn lại trên bảng giữ nguyên). Thực hiện liên tục thao tác trên cho đến khi trên bảng chỉ còn lại đúng một số. Hỏi số đó bằng bao nhiêu?
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Đắk Lắk
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đắk Lắk. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Đắk Lắk : + Cho 9 hình vuông có độ dài các cạnh là 9 số nguyên dương liên tiếp. Gọi S là tổng diện tích của 9 hình vuông đã cho. Tồn tại hay không một hình vuông có cạnh là một số nguyên dương và có diện tích bằng S? + Vẽ bất kì 17 đường tròn, mỗi đường tròn có độ dài đường kính là một số nguyên dương. Chứng minh rằng trong 17 đường tròn đó, ta luôn chọn được 5 đường tròn có tổng đọ dài các đường kính là một số chia hết cho 5. + Cho tứ giác ABCD có ABC ADC 90o BC CD. Gọi M là trung điểm của AB, đường tròn tâm C bán kính BC (ký hiệu là đường tròn pCq) cắt MD tại EpE Dq H là giao điểm của AC và BD 1. Chứng minh rằng △MEB △MBD và tứ giác BHEM là tứ giác nội tiếp. 2. Gọi F là giao điểm của đường thẳng AE và đường tròn pC F Eq. Chứng minh rằng BC K DF 3. Gọi I là giao điểm của đường thẳng BC và đường tròn pC I Bq, J là giao điểm của AI và DF. Tính tỉ số DJ DF.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Sóc Trăng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sóc Trăng. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng : + Trong kỳ thi tuyển sinh lớp 10 năm học 2023 – 2024 của tỉnh Sóc Trăng, bạn An trúng tuyển thủ khoa nên được cha mẹ thưởng cho một chiếc điện thoại mới. Khi đến cửa hàng điện thoại An được tư vấn tiếu mua điện thoại kèm phụ kiện thì giá của phụ kiện sẽ được giảm giá 30% so với giá niêm yết ban đầu. Biết rằng tổng giá tiền điện thoại và phụ kiện ban đầu là 11500.000 đồng và nhờ mua hai thứ nên cha mẹ An chỉ phải trả tổng số tiền là 11 050 000 đồng. Hãy tính giá của chiếc điện thoại mà An được thưởng là bao nhiêu tiền? + Cho tam giác ABC vuông tại A, có đường cao AH và AB = 6cm, AC = 8cm. Gọi N là trung điểm của BC, kẻ NO vuông góc với AC tại O. a) Chứng minh AONH là tứ giác nội tiếp. b) Chứng minh CO.CA = CN.CH. c) Tính độ dài đường cao NI của tam giác NHO. Yêu cầu vẽ hình khi chứng minh. + Một bể cá cảnh hình cầu có bán kính bằng 9cm. Người ta cần đổ vào bể một lượng nước chiếm thể tích bể. Hỏi cần đổ bao nhiêu lít nước? (biết rằng 1l = 1 000 cm3 và lấy pi = 3,14).