Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 7 môn Toán năm 2020 2021 phòng GD ĐT thành phố Bắc Giang

Nội dung Đề thi HSG lớp 7 môn Toán năm 2020 2021 phòng GD ĐT thành phố Bắc Giang Bản PDF - Nội dung bài viết Kỳ thi HSG Toán lớp 7 năm 2020 - 2021 tại Bắc Giang Kỳ thi HSG Toán lớp 7 năm 2020 - 2021 tại Bắc Giang Ngày 12 tháng 03 năm 2021, Phòng Giáo dục và Đào tạo thành phố Bắc Giang đã tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp thành phố môn Toán lớp 7 năm học 2020 - 2021. Đề thi HSG Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Bắc Giang bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian thi là 150 phút. Đề thi Toán HSG lớp 7 năm 2020 - 2021 tại Bắc Giang được thiết kế để kiểm tra và đánh giá năng lực toán học của học sinh. Với 05 bài toán tự luận, học sinh sẽ phải áp dụng kiến thức và kỹ năng toán học đã học để giải quyết các vấn đề phức tạp. Thời gian làm bài trong kỳ thi là 150 phút, đòi hỏi học sinh phải tự tin, kiên định và sắp xếp thời gian một cách hiệu quả. Kỳ thi HSG Toán lớp 7 năm 2020 - 2021 là cơ hội để học sinh thể hiện khả năng, kiến thức và sự đam mê với môn học Toán. Ngoài ra, qua kỳ thi này, học sinh cũng có cơ hội rèn luyện kỹ năng làm bài thi tự luận, tư duy logic và phản xạ nhanh nhạy.

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 7 năm 2017 - 2018 phòng GDĐT Kinh Môn - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề thi Olympic Toán 7 năm 2017 – 2018 phòng GD&ĐT Kinh Môn – Hải Dương : + Cho ABC có góc A nhỏ hơn 900. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và ACN. a) Chứng minh rằng: MC = BN và BN CM. b) Kẻ AH BC (H BC). Chứng minh AH đi qua trung điểm của MN. + Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA: MB: MC = 1: 2: 3. Tính số đo AMB? + Cho biết (x – 1).f(x) = (x + 4).f(x + 8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm.
Tuyển tập 150 đề thi học sinh giỏi môn Toán 7 - Hồ Khắc Vũ
Tài liệu gồm 157 trang tuyển tập 150 đề thi chọn học sinh giỏi môn Toán lớp 7 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi học sinh giỏi Toán 7 năm 2016 - 2017 phòng GDĐT Giao Thủy - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi học sinh giỏi Toán 7 năm học 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định : + Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. + Cho các số nguyên dương a; b; c; d; e thỏa mãn: chia hết cho 2. Chứng tỏ rằng: a + b + c + d + e là hợp số. + Cho tỷ lệ thức: a c b d. Chứng minh rằng: 2 3 2 3 2 3 2 3 a b c d a b c d (giả thiết các tỷ lệ thức đều có nghĩa).
Đề thi HSG Toán 7 năm 2016 - 2017 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đáp án và lời giải chi tiết đề thi HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Hoằng Hóa – Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2017.