Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra đội tuyển HSG lần 1 lớp 12 môn Toán năm 2020 2021 trường THPT Vĩnh Lộc Thanh Hóa

Nội dung Đề kiểm tra đội tuyển HSG lần 1 lớp 12 môn Toán năm 2020 2021 trường THPT Vĩnh Lộc Thanh Hóa Bản PDF Ngày 08 tháng 11 năm 2020, trường THPT Vĩnh Lộc (Thanh Hóa) phối hợp cùng trường THPT Thạch Thành (Thanh Hóa) tổ chức kỳ thi kiểm tra kiến thức đội tuyển học sinh giỏi môn Toán lớp 12 THPT năm học 2020 – 2021 lần thứ nhất. Đề kiểm tra đội tuyển HSG lần 1 Toán lớp 12 năm 2020 – 2021 trường THPT Vĩnh Lộc – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết. Trích dẫn đề kiểm tra đội tuyển HSG lần 1 Toán lớp 12 năm 2020 – 2021 trường THPT Vĩnh Lộc – Thanh Hóa : + Bốn người khách cùng ra khỏi quán và bỏ quên mũ. Chủ quán không biết rõ chủ của những chiếc mũ đó nên gửi trả cho họ một cách ngẫu nhiên. Tìm xác suất để cả bốn người cùng được trả sai mũ. + Số lượng của một loài vi khuẩn trong phòng thí nghiệm được tính theo công thức S(t) = A.e^rt. Trong đó, A là số lượng vi khuẩn ban đầu, S(t) là số lượng vi khuẩn có được sau thời gian t (phút), r > 0 là tỷ lệ tăng trưởng không đổi theo thời gian và t là thời gian tăng trưởng. Biết rằng số lượng vi khuẩn ban đầu có 500 con và sau 5 giờ có 1500 con. Hỏi sao bao lâu, kể từ lúc bắt đầu, số lượng vi khuẩn đạt 121500 con? + Bạn An muốn làm một chiếc thùng hình trụ không đáy từ nguyên liệu là mảnh tôn hình tam giác đều ABC có cạnh bằng 90 cm. Bạn cắt mảnh tôn hình chữ nhật MNPQ từ mảnh tôn nguyên liệu (với M, N thuộc cạnh BC; P, Q tương ứng thuộc cạnh AC và AB) để tạo thành hình trụ có chiều cao bằng MQ. Tính thể tích lớn nhất của chiếc thùng mà bạn An có thể làm được. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Bình Phước
Ngày 15 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Phước tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT năm học 2020 – 2021. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bình Phước; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Phước : + Cho tập T = {1; 2; 3; 4; 5}. Gọi H là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số đôi một khác nhau thuộc T. Chọn ngẫu nhiên một số thuộc H. Tính xác suất để số được chọn có tổng các chữ số bằng 10. + Cho hình vuông ABCD có A(-1;2). Gọi M, N lần lượt là trung điểm BC và CD. Gọi H là giao điểm của BN và AM. Viết phương trình đường tròn ngoại tiếp tam giác HDN biết phương trình đường thẳng BN: 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và nằm trong mặt phẳng vuông góc với (ABCD). Gọi H là trung điểm AB. Tính thể tích khối chóp S.ABCD và tan (SH;(SCD)).
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Kon Tum
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Kon Tum; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Kon Tum : + Một nhóm gồm 9 học sinh một lớp trong đó có ba bạn Việt, Nam và Hùng đi dự đại hội Đoàn trường, ban tổ chức sắp xếp ngẫu nhiên 9 học sinh này ngồi vào một dãy ghế được đánh số từ 1 đến 9. Tính xác suất để số ghế của bạn Hùng bằng trung bình cộng số ghế của hai bạn Việt và Nam. + Biết mặt phẳng (ABC) vuông góc với mặt phẳng (ABD). Chứng minh rằng cos A.cos B = cos C với A, B, C là ký hiệu ba góc tương ứng với các đỉnh A, B, C của tam giác ABC. + Cho hàm số f(x) = -x4 + 2mx2 – m2 – 1. Tìm m để đồ thị hàm số f(x) có ba điểm cực trị và ba điểm đó cùng gốc tọa độ O lập thành tứ giác nội tiếp đường tròn.
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Lạng Sơn
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Lạng Sơn; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Lạng Sơn : + Một khách sạn có 50 phòng. Hiện tại mỗi phòng cho thuê với giá 400 nghìn đồng một ngày thì toàn bộ phòng được thuê hết. Biết rằng cứ mỗi lần tăng giá lên them 20 nghìn đồng thì có thêm 2 phòng trống. Hỏi giám đốc phải chọn giá phòng mới là bao nhiêu để số tiền thu được của khách sạn trong 1 ngày là lớn nhất. + Gọi S là tập hợp các số có 5 chữ số đôi một khác nhau abcde với a, b, c, d, e thuộc tập {1, 2, 3, …, 9}. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn là số chẵn và thỏa mãn a < b < c < d < e. + Cho hàm số bậc ba y = f(x) = ax3 + bx2 + 1/3x + c và đường thẳng y = g(x) có đồ thị như trong hình vẽ bên và AB = 5. Giải phương trình f(x) = g(x) + x2 + 2.
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 - 2021 sở GDĐT Bình Thuận
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2020 – 2021 sở GD&ĐT Bình Thuận; đề gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 12 cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Thuận : + Cho đường tròn (O) có đường kính AB cố định, M là điểm di động trên (O) sao cho M khác với các điểm A, B và OM không vuông góc với AB. Các tiếp tuyến của (O) tại A và M cắt nhau tại C. Gọi (I) là đường tròn đi qua M và tiếp xúc với đường thẳng AC tại C. Đường thẳng OC cắt lại (I) tại điểm thứ hai là E. a. Chứng minh E là trung điểm của OC. b. Gọi CD là đường kính của (I). Chứng minh đường thẳng qua D và vuông góc với BC luôn đi qua một điểm cố định khi M di động trên (O). + Cho hai số nguyên dương k và n sao cho k =< n. Xét tất cả các tập hợp con gồm k phần tử của tập hợp {1;2;…;n}. Trong mỗi tập hợp con ta chọn ra phần tử nhỏ nhất. Chứng minh tổng tất cả các phần tử được chọn bằng k+1Cn+1. + Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = (x – 11)√(x2 + 9) trên đoạn [0;4].