Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 trường THCS Đặng Tấn Tài - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 trường THCS Đặng Tấn Tài, thành phố Thủ Đức, thành phố Hồ Chí Minh. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 trường THCS Đặng Tấn Tài – TP HCM : + Theo âm lịch, một chu kì quay của Mặt Trăng quanh Trái Đất là khoảng 29,53 ngày nên một năm âm lịch chỉ có khoảng 354 ngày (làm tròn). Do vậy, cứ sau một vài năm âm lịch thì người ta phải bổ sung một tháng (tháng nhuận) để đảm bảo năm âm lịch tương đối phù hợp với chu kì của thời tiết. Cách tính năm nhuận âm lịch như sau: Lấy số năm chia cho 19, nếu số dư là một trong các số: 0; 3; 6; 9; 11; 14; 17 thì năm âm lịch đó có tháng nhuận. Ví dụ: Năm 2017 là năm âm lịch có tháng nhuận vì 2017 chia 19 dư 3. Năm 2015 không phải năm nhuận âm lịch vì 2015 chia cho 19 dư 1.a) Hãy sử dụng quy tắc trên để xác định năm 1995 và năm 2030 có phải năm nhuận âm lịch hay không? b) Năm nhuận dương lịch là năm chia hết cho 4. Ngoài ra, những năm chia hết cho 100 chỉ được coi là năm nhuận dương lịch nếu chúng cũng chia hết cho 400 (ví dụ 1600 là năm nhuận dương lịch nhưng 1700 không là năm nhuận dương lịch). Hỏi trong các năm từ 1895 đến 1930, năm nào vừa là năm nhuận âm lịch, vừa là năm nhuận dương lịch. + Càng lên cao không khí càng loãng nên áp suất khí quyển càng giảm. Với những độ cao không lớn lắm thì ta có công thức áp suất khí quyển tương ứng với độ cao so với mực nước biển là một hàm số bậc nhất p = a.h + b, trong đó h(m) là độ cao so với mực nước biển, p(mmHg) là áp suất ứng với độ cao h. Biết rằng, tại mặt nước biển thì áp suất là 760mmHg và cứ lên cao 100m thì áp suất giảm 8mmHg. a) Xác định hệ số a và b. b) Thành phố Đà Lạt cao 1500m so với mực nước biển thì áp suất khí quyển tại Đà Lạt là bao nhiêu? + Lớp 9A dự định tổ chức liên hoan lớp cuối năm, trong phần nước uống cần chuẩn bị 42 ly trà sữa truyền thống. Để tiết kiệm chi phí lớp 9A đã tìm hiểu giá của hai cửa hàng A và B như sau: cửa hàng A, mua năm ly đồ uống bất kì thì sẽ được tặng một ly (cùng loại) và nếu hóa đơn trên 400000 đồng thì được giảm thêm 10% trên hóa đơn. Cửa hàng B chỉ khuyến mãi khi đặt hàng qua app GF thì sẽ được giảm 10% mỗi ly khi mua 3 ly trở lên và nếu mua từ 10 ly trở lên thì giảm 25% mỗi ly so với giá niêm yết và phí giao hàng thì khách hàng trả theo khoảng cách từ cửa hàng đến nơi nhận hàng. Hỏi Lớp 9A nên mua ở cửa hàng nào sẽ tiết kiệm hơn và tiết kiệm hơn được bao nhiêu tiền? Biết giá niêm yết một ly trà sữa truyền thống ở cả hai cửa hàng là như nhau và đều là 30000 đồng, khoảng cách từ địa điểm liên hoan đến cửa hàng B là 2,3km. Phí giao hàng được tính theo bảng sau: Khoảng cách Giá tiền (đồng) Dưới 10 km 25000 Từ 10km đến 20km 27500 Từ 20km đến 40km 30000 Trên 40km 5% giá trị đơn hàng.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường PTNK TP HCM
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 trường PTNK TP HCM Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 trường PTNK TP HCM Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2023 – 2024 trường Phổ Thông Năng Khiếu, thành phố Hồ Chí Minh. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 trường PTNK – TP HCM: 1. Phần 1: Bài toán về việc tô màu các ô của bảng hình vuông 4 × 4 bằng màu đen hoặc trắng theo các điều kiện nhất định. 2. Phần 2: Giải bài toán liên quan đến số nguyên m, n thỏa mãn m2 − n = 1, với các yêu cầu cụ thể và chi tiết. 3. Phần 3: Bài toán về tam giác ABC, với nhiều yêu cầu phức tạp như chứng minh đường tròn ngoại tiếp tam giác ALH đi qua tâm nội tiếp I, chứng minh BAD = CAH, chứng minh KJ vuông góc EF, và chứng minh đồng quy của EF, IR và AS. Những bài toán này không chỉ đòi hỏi kiến thức chuyên sâu mà còn đề cao khả năng suy luận logic và khám phá của các thí sinh. Chúc các em học sinh sẽ giải quyết tốt các bài toán trong đề tuyển sinh này và đạt kết quả cao trong kỳ thi sắp tới.
Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 trường PTNK TP HCM
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2023 2024 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 trường PTNK TP HCM Đề tuyển sinh môn Toán (không chuyên) năm 2023 - 2024 trường PTNK TP HCM Xin chào quý thầy cô và các em học sinh! Sytu xin giới thiệu đến các bạn đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 môn Toán (không chuyên) năm học 2023 - 2024 của trường Phổ Thông Năng Khiếu, thành phố Hồ Chí Minh. Đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2023 - 2024 trường PTNK - TP HCM bao gồm các phần sau: Trong một chương trình làm từ thiện, các học sinh lớp 10 trường PTNK đã tổ chức phát tập cho các em học sinh của một trường tiểu học vùng sâu. Chương trình được chia làm ba đợt: lần 1 phát 120 quyển tập, lần 2 phát 160 quyển tập và lần 3 phát 315 quyển tập. Lần 1 có 5 em học sinh vắng mặt, lần 2 có 3 em học sinh vắng mặt, và lần 3 các em học sinh đều có mặt. Các em nhận được số tập ở lần 3 bằng tổng số tập nhận được ở hai lần đầu. Hãy tính số học sinh của trường tiểu học đó. Đề thi cũng có một bài toán về hình học: Tam giác ABC nhọn nội tiếp đường tròn (O; R). Hai tiếp tuyến của (O) tại B, C cắt nhau tại M. Đoạn MO cắt BC tại H và MA cắt (O) tại D (D khác A). Vẽ Ax là tiếp tuyến tại A của (O). a) Chứng minh rằng MB2 = MD.MA và tứ giác ADHO nội tiếp. b) Vẽ đường thẳng qua M song song Ax cắt AB, AC lần lượt tại P, Q. Chứng minh tam giác MBP cân và M là trung điểm của PQ. c) Chứng minh rằng AB.AP = AC.AQ và PAM = CAH. Hy vọng các em sẽ học tập và ôn tập thật kỹ trước khi bước vào kỳ thi quan trọng. Chúc các em thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Bình
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Bình Bản PDF - Nội dung bài viết Đề Tuyển Sinh Môn Toán (Chuyên) Năm 2023 - 2024 Sở GDĐT Thái Bình Đề Tuyển Sinh Môn Toán (Chuyên) Năm 2023 - 2024 Sở GDĐT Thái Bình Xin chào quý thầy cô và các em học sinh! Viết đến đây, chúng ta sẽ cùng tìm hiểu về đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (dành cho thí sinh thi chuyên Toán và Tin học) năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Thái Bình. Trong đề tuyển sinh môn Toán (chuyên) năm 2023 - 2024 của sở GD&ĐT Thái Bình, chúng ta sẽ gặp phải các bài toán thú vị như: Cho đa thức bậc ba \( P(x) \) thỏa mãn khi chia \( P(x) \) cho \( x - 1 \), \( x - 2 \), \( x - 3 \) đều được số dư là 6 và \( P(-1) = -18 \). Hãy tìm đa thức \( P(x) \). Trong tam giác vuông \( \triangle ABC \) tại \( A \) với \( AB = c \) và \( AC = b \), hãy tìm vị trí của đường thẳng \( d \) để diện tích tứ giác \( BDEC \) đạt giá trị lớn nhất, theo b, c. Chứng minh rằng nếu \( p \) là số nguyên tố lớn hơn 3 thì \( (7 - p)(7 + p) \) chia hết cho 24. Hy vọng rằng những kiến thức và kỹ năng mà các em đã học sẽ giúp các em tự tin và thành công khi giải các bài toán trong đề thi tuyển sinh năm nay. Chúc quý thầy cô và các em học sinh có một kỳ thi suôn sẻ và đạt kết quả cao!
Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ
Nội dung Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ Bản PDF - Nội dung bài viết Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ Đề vào môn Toán (chuyên) năm 2023 2024 trường chuyên Hùng Vương Phú Thọ Sytu xin trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh đề chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán và chuyên Tin học) năm học 2023 - 2024 tại trường THPT chuyên Hùng Vương, tỉnh Phú Thọ. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề vào lớp 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Hùng Vương - Phú Thọ: Bạn An viết lên bảng 11 số nguyên dương (không nhất thiết phân biệt) có tổng bằng 30. Chứng minh rằng bạn An có thể xóa đi một số số sao cho các số còn lại trên bảng có tổng bằng 10. Trên đường tròn tâm O đường kính AB, R=2 lấy điểm N sao cho AN=R và M là một điểm thay đổi trên cung nhỏ BN (M khác B và N). Gọi I là giao điểm của AM và BN, H là hình chiếu của I trên AB, IH cắt AN tại C, K là điểm đối xứng với N qua AB. Chứng minh CM CB CI CH và ba điểm KHM thẳng hàng. Gọi P là giao điểm thứ hai của NH và (O). Chứng minh tâm đường tròn ngoại tiếp tam giác HPK thuộc đường thẳng cố định khi M thay đổi. Xác định vị trí của điểm M để tổng MB MN đạt giá trị lớn nhất. Viết lên bảng 2023 số 11 2 3 2022 2023. Mỗi bước ta xoá đi 2 số x y bất kì trên bảng rồi viết lên bảng số 1 xy x y (các số còn lại trên bảng giữ nguyên). Thực hiện liên tục thao tác trên cho đến khi trên bảng chỉ còn lại đúng một số. Hỏi số đó bằng bao nhiêu? File WORD (dành cho quý thầy, cô):