Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2021 2022 phòng GD ĐT Anh Sơn Nghệ An

Nội dung Đề thi thử Toán vào năm 2021 2022 phòng GD ĐT Anh Sơn Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2021 - 2022 phòng GD&ĐT Anh Sơn, Nghệ An Đề thi thử Toán vào năm 2021 - 2022 phòng GD&ĐT Anh Sơn, Nghệ An Đề thi thử Toán vào lớp 10 năm 2021 - 2022 phòng GD&ĐT Anh Sơn, Nghệ An bao gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút. Thông tin từ đề thi thử Toán vào lớp 10 năm 2021 - 2022 phòng GD&ĐT Anh Sơn, Nghệ An: Một đơn vị vận tải dự định điều một số xe cùng loại để vận chuyển 40 tấn hàng. Sau khi được giao vận chuyển thêm 14 tấn nữa, phải điều thêm 2 xe cùng loại và mỗi xe chở thêm 0,5 tấn so với ban đầu. Biết rằng mỗi xe chở số lượng hàng như nhau và số xe ban đầu không quá 15 xe. Hỏi số xe cần điều ban đầu là bao nhiêu? Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh: a) BEFI là tứ giác nội tiếp đường tròn. b) AE.AF = AC^2. c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp CEF luôn thuộc một đường thẳng cố định. Tìm x, y thoả mãn: ... Bạn hãy thử giải và đưa ra câu trả lời cho các bài toán thú vị này để rèn luyện kỹ năng Toán của mình nhé!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi Toán chuyên Tuyển sinh lớp 10 năm 2022 - 2023 Sở GD&ĐT Bình Định Đề thi Toán chuyên Tuyển sinh lớp 10 năm 2022 - 2023 Sở GD&ĐT Bình Định Sytu xin gửi đến các thầy cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán) năm học 2022 - 2023 của Sở Giáo dục và Đào tạo tỉnh Bình Định. Đề thi sẽ diễn ra vào ngày 11 tháng 06 năm 2022, bao gồm đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề thi: 1. Cho tam giác ABC nhọn, AB AC nội tiếp đường tròn (O). Gọi H là giao điểm của các đường cao AD, BE, CF. M là trung điểm của BC. Chứng minh tứ giác DMEF là tứ giác nội tiếp. 2. Đường tròn tâm I đường kính AH cắt đường tròn (O) tại điểm thứ hai là P. Kẻ đường kính AK của đường tròn (O). Chứng minh bốn điểm P, H, M, K thẳng hàng. 3. Các tiếp tuyến tại A và P của đường tròn (I) cắt nhau ở N. Chứng minh ba đường thẳng MN, EF, AH đồng quy. 4. Có tất cả bao nhiêu đa thức P(x) có bậc không lớn hơn 2 với các hệ số nguyên không âm và P(3) = 100? 5. Cho phương trình 3x^2 + bx + cx + 1 = 0 trong đó b, c là các số nguyên. Biết phương trình có nghiệm 0 và 2 + √5. Tìm b, c và các nghiệm còn lại của phương trình. Để tải và xem đề thi chi tiết, vui lòng truy cập vào file WORD tại đường link sau...
Đề tuyển sinh môn Toán năm 2022 2023 trường THPT chuyên Bắc Giang
Nội dung Đề tuyển sinh môn Toán năm 2022 2023 trường THPT chuyên Bắc Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2022-2023 trường THPT chuyên Bắc Giang Đề tuyển sinh môn Toán năm 2022-2023 trường THPT chuyên Bắc Giang Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2022-2023 của trường THPT chuyên Bắc Giang. Kỳ thi sẽ diễn ra vào ngày 06 tháng 06 năm 2022, với đề thi có đáp án, lời giải chi tiết và thang điểm. Trích dẫn một số câu hỏi trong đề thi: 1) Cho nửa đường tròn O có đường kính AB. Gọi M là một điểm thuộc nửa đường tròn, H là hình chiếu của M trên AB. Chứng minh rằng bốn điểm O, B, K, M cùng thuộc một đường tròn. 2) Gọi C, D lần lượt là hình chiếu của H trên các đường thẳng MA và MB. Chứng minh ba đường thẳng CD, MH, AK đồng quy. 3) Tìm vị trí của điểm M để diện tích tứ giác CDFE đạt giá trị lớn nhất, trong đó E, F lần lượt là trung điểm của AH và BH. Cùng với các câu hỏi khác về số học và đại số, đề thi tuyển sinh môn Toán năm 2022-2023 trường THPT chuyên Bắc Giang hứa hẹn mang đến thách thức và cơ hội cho các em học sinh thể hiện tài năng và kiến thức.
Đề tuyển sinh Toán (chuyên) 2022 2023 trường chuyên Lê Quý Đôn BR VT
Nội dung Đề tuyển sinh Toán (chuyên) 2022 2023 trường chuyên Lê Quý Đôn BR VT Bản PDF - Nội dung bài viết Đề thi tuyển sinh Toán (chuyên) 2022-2023 Trường chuyên Lê Quý Đôn BR VT Đề thi tuyển sinh Toán (chuyên) 2022-2023 Trường chuyên Lê Quý Đôn BR VT Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 tại trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu. Kỳ thi sẽ diễn ra vào ngày 09 tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 Toán (chuyên) 2022 – 2023 trường chuyên Lê Quý Đôn – BR VT: + Cho tam giác ABC nhọn, AB AC nội tiếp đường tròn tâm O và có ba đường cao AD, BE, CF cắt nhau tại H. Gọi I, J lần lượt là trung điểm của AH và BC. a) Chứng minh rằng IJ vuông góc với EF và IJ song song với OA. b) Gọi K, Q lần lượt là giao điểm của EF với BC và AD. Chứng minh rằng QE = KE và QF = KF. c) Đường thẳng chứa tia phân giác của FHB cắt AB, AC lần lượt tại M và N. Tia phân giác của CAB cắt đường tròn ngoại tiếp tam giác AMN tại điểm P khác A. Chứng minh ba điểm H, P, J thẳng hàng. + Cho tam giác ABC cố định có diện tích S. Đường thẳng d thay đổi đi qua trọng tâm của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Gọi 1, 2 là diện tích các tam giác ABN và ACM. Hãy tìm giá trị nhỏ nhất của 1/2 + S/2. + Cho các số thực a, b, c, d thỏa mãn 2ac > bd. Chứng minh phương trình sau luôn có nghiệm: 2x^2 - ax + b = cx - dx.
Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Tiền Giang
Nội dung Đề tuyển sinh môn Toán năm 2022 2023 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD&ĐT Tiền Giang Đề thi tuyển sinh môn Toán năm 2022 - 2023 sở GD&ĐT Tiền Giang Xin chào quý thầy cô và các em học sinh lớp 9. Dưới đây là đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Tiền Giang. Kỳ thi diễn ra vào ngày 17 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2022 - 2023 sở GD&ĐT Tiền Giang: Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = -2x + 3. Vẽ parabol (P) và tìm toạ độ các giao điểm của (P) và (d) bằng phép tính. Viết phương trình đường thẳng (d′) song song với (d) và tiếp xúc (P). Tính toạ độ tiếp điểm M của (d′) và (P). Một xe tải đi từ A đến B cách nhau 210 km. Sau 2 giờ, trên cùng quãng đường, một ô tô khởi hành từ B đến A với vận tốc lớn hơn xe tải 10 km/h. Tính vận tốc xe tải khi hai xe gặp nhau tại nơi cách A 150 km. Cho tam giác ABC có ba góc nhọn. Kẻ các đường cao AD và BE (D ∈ BC và E ∈ AC). Chứng minh tứ giác ABDE nội tiếp đường tròn và xác định tâm O của đường tròn đó. Chứng minh rằng CD·CB = CE·CA. Giả sử ACB đo 60 độ và AB = 6 cm. Tính diện tích hình quạt tròn giới hạn bởi hai bán kính OD, OE và cung nhỏ DE của đường tròn (O). Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công!