Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2021 2022 phòng GD ĐT Anh Sơn Nghệ An

Nội dung Đề thi thử Toán vào năm 2021 2022 phòng GD ĐT Anh Sơn Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2021 - 2022 phòng GD&ĐT Anh Sơn, Nghệ An Đề thi thử Toán vào năm 2021 - 2022 phòng GD&ĐT Anh Sơn, Nghệ An Đề thi thử Toán vào lớp 10 năm 2021 - 2022 phòng GD&ĐT Anh Sơn, Nghệ An bao gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút. Thông tin từ đề thi thử Toán vào lớp 10 năm 2021 - 2022 phòng GD&ĐT Anh Sơn, Nghệ An: Một đơn vị vận tải dự định điều một số xe cùng loại để vận chuyển 40 tấn hàng. Sau khi được giao vận chuyển thêm 14 tấn nữa, phải điều thêm 2 xe cùng loại và mỗi xe chở thêm 0,5 tấn so với ban đầu. Biết rằng mỗi xe chở số lượng hàng như nhau và số xe ban đầu không quá 15 xe. Hỏi số xe cần điều ban đầu là bao nhiêu? Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh: a) BEFI là tứ giác nội tiếp đường tròn. b) AE.AF = AC^2. c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp CEF luôn thuộc một đường thẳng cố định. Tìm x, y thoả mãn: ... Bạn hãy thử giải và đưa ra câu trả lời cho các bài toán thú vị này để rèn luyện kỹ năng Toán của mình nhé!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Thanh Hóa
Thứ Sáu ngày 04 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = (2m + 1)x + m (m là tham số). Tìm m để đường thẳng (d) đi qua điểm A(1;5). + Cho phương trình x2 – 2x + m – 1 = 0 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn hệ thức x1^4 – x1^3 = x2^4 – x2^3. + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AD, BE, CF (D thuộc BC, E thuộc AC, F thuộc AB) của tam giác cắt nhau tại H, M là trung điểm của cạnh BC. 1. Chứng minh AEHF là tứ giác nội tiếp. 2. Chứng minh các đường thẳng ME và MF là các tiếp tuyến của đường tròn ngoại tiếp tứ giác AEHF. 3. Chứng minh DE + DF =< BC.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Lào Cai
Thứ Tư ngày 02 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Lào Cai tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Lào Cai gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Lào Cai : + Cho hàm số y x b 2. Tìm b biết rằng đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 3. + Cho Parabol 2 P y x và đường thẳng d y m x m 1 4 (m là tham số). Tìm điều kiện của tham số m để d cắt P tại hai điểm nằm về hai phía của trục tung. + Hai bạn An và Bình cùng may khẩu trang để ủng hộ địa phương đang có dịch bệnh Covid-19, thì mất hai ngày mới hoàn thành công việc. Nếu chỉ có một mình bạn An làm việc trong 4 ngày rồi nghỉ và bạn Bình làm tiếp trong 1 ngày nữa thì hoàn thành công việc. Hỏi mỗi người làm riêng một mình thì sau bao lâu sẽ hoàn thành công việc?
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Bình Dương
Thứ Năm ngày 03 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Bình Dương tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bình Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bình Dương : + Cho hệ phương trình: 3 2 10 2 x y x y m (m là tham số). 1) Giải hệ phương trình đã cho khi m = 9. 2) Tìm tất cả các giá trị của tham số m để hệ phương trình đã cho có nghiệm x y thỏa x y 0 0. + Cho Parabol 2 P y x và đường thẳng 5 6 d y x. 1) Vẽ đồ thị P. 2) Tìm tọa độ các giao điểm của P và d bằng phép tính. 3) Viết phương trình đường thẳng d biết d song song d và d cắt P tại hai điểm phân biệt có hoành độ lần lượt là 1 2 x x sao cho 1 2 x x 24. + Một khu vườn hình chữ nhật có chiều dài gấp 3 lần chiều rộng. Người ta làm một lối đi xung quanh vườn (thuộc đất trong vườn) rộng 1,5m. Tính kích thước của vườn, biết rằng đất còn lại trong vườn đề trồng trọt là 2 4329 m.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 trường THPT chuyên Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 trường THPT chuyên Hà Tĩnh; kỳ thi được diễn ra vào thứ Năm ngày 03 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 trường THPT chuyên Hà Tĩnh : + Cho x, y là các số thực dương thỏa mãn x + y + xy = 3. Tìm giá trị lớn nhất của biểu thức: P. + Cho nửa đường tròn tâm O đường kính AB. Gọi I là điểm chính giữa của cung AB. Trên cung lớn AB của đường tròn tâm I, bán kính IA, lấy điểm C sao cho tam giác ABC nhọn. Gọi M, N lần lượt là giao điểm của CA, CB với nửa đường tròn đường kính AB (M khác A, N khác B); J là giao điểm của AN với BM. a) Chứng minh MBC và NAC là các tam giác cân. b) Chứng minh I là trực tâm của tam giác CMN. c) Gọi K là trung điểm của IJ, tính tỉ số CJ/OK. + Cho tập hợp X = {1;2;3;4;5;6;7;8;9}, chia tập hợp X thành hai tập hợp khác rỗng và không có phần tử chung. Chứng minh rằng với mọi cách chia thì luôn tồn tại 3 số a, b, c trong một tập hợp thỏa mãn: a + c = 2b.