Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa

Nội dung Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Đề thi HSG huyện lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Hà Trung Thanh Hóa Trong kỳ thi giao lưu học sinh giỏi các môn văn hóa lớp 7 cấp huyện năm học 2020 - 2021 do phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa tổ chức vào Thứ Sáu ngày 09 tháng 04 năm 2021, đề thi HSG huyện Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Hà Trung - Thanh Hóa đã được ra đề. Đề thi này gồm 01 trang với tổng cộng 06 bài toán dạng tự luận, dành cho thí sinh lớp 7. Thời gian làm bài thi được quy định là 150 phút, đủ để học sinh tự tin trả lời các câu hỏi. Trong đề thi HSG huyện Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Hà Trung - Thanh Hóa, có một số bài toán khá thú vị như sau: + Bài toán 1: Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F. Yêu cầu chứng minh rằng: a) AE = AF. b) BE = CF. c) 2 AB = AC = AE. + Bài toán 2: Cho A nằm trong góc xOy nhọn. Hãy tìm điểm B, C lần lượt thuộc trục Ox, Oy sao cho chu vi của tam giác ABC là nhỏ nhất. + Bài toán 3: Tìm các số nguyên dương x, y, z thỏa mãn điều kiện x + y + z = xyz. Đây là những bài toán đòi hỏi sự tư duy logic và kiến thức Toán học sâu rộng của các thí sinh lớp 7. Chúc các em có một kỳ thi thành công và đạt kết quả tốt trong đề thi HSG huyện Toán năm 2020 - 2021!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 7 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp thành phố môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 10 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 7 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Cho tam giác ABC vuông tại A B C 2 kẻ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD HB. Từ C kẻ đường thẳng vuông góc với đường thẳng AD tại E. a) Tam giác ABD là tam giác gì? Vì sao? b) Chứng minh rằng DE DH HE AC. c) Gọi K là giao điểm của AH và CE, lấy điểm I bất kỳ thuộc đoạn thẳng HE I H I E. Chứng minh rằng 3 2 AC IA IK IC. + Một số nguyên dương được gọi là số may mắn nếu số đó gấp 99 lần tổng tất cả các chữ số của nó. Tìm số may mắn có bốn chữ số. + Cho tam giác ABC vuông tại A, độ dài cạnh huyền bằng 2015. Trong tam giác ABC lấy 2031121 điểm phân biệt bất kỳ. Chứng minh rằng tồn tại ít nhất hai điểm có khoảng cách không lớn hơn 1.
Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Tứ Kỳ - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Tứ Kỳ – Hải Dương : + Cho đa thức F(x) = ax2 + bx + c trong đó a, b, c là các số hữu tỉ biết. Biết rằng F(0); F(1); F(2) đều có giá trị nguyên. Chứng minh rằng 2a là số nguyên. + Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + c2 = b2 + d2. Chứng minh rằng: a + b + c + d là hợp số. + Cho tam giác ABC cân tại A, có ba góc đều là góc nhọn. Về phía ngoài của tam giác ABC vẽ các tam giác vuông cân: ABE vuông cân tại B, ACF vuông cân tại C. Kẻ đường cao AH, trên tia đối của tia AH lấy điểm I sao cho AI = BC. Chứng minh: а) ЕAН = FAH. b) BI = CE và BI vuông góc với CE. c) Ba đường thẳng AH, CE, BF đồng quy.
Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Nhân dịp nghỉ lễ ngày giải phóng miền Nam 30/04, một trường THCS lập kế hoạch cho 3 nhóm học sinh khối 7 tham gia đi thăm quê Bác. Trong đó 2/3 số học sinh của nhóm I bằng 8/11 số học sinh của nhóm II và bằng 4/5 số học sinh của nhóm III. Biết rằng số học sinh của nhóm I ít hơn tổng số học sinh của nhóm II và nhóm III là 18 học sinh. Tính số học sinh của mỗi nhóm. + Cho tam giác ABC có góc A nhỏ hơn 90°. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ đoạn thẳng AM sao cho AM vuông góc AB và AM = AB. Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ đoạn thẳng AN sao cho AN vuông góc AC và AN = AC. a) Chứng minh rằng: Tam giác AMC = tam giác ABN. b) Chứng minh: BN vuông góc CM. c) Kẻ AH vuông góc BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN. + Trong một bảng ô vuông gồm có 5 x 5 vuông, người ta viết vào mỗi ô vuông chỉ một trong 3 số 1; 0; -1. Chứng minh rằng trong các tổng của 5 số theo mỗi cột, mỗi hàng, mỗi đường chéo phải có ít nhất hai tổng số bằng nhau.