Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Hậu Lộc 2 - Thanh Hóa

Chủ Nhật ngày 12 tháng 01 năm 2020, trường THPT Hậu Lộc 2, tỉnh Thanh Hóa tổ chức kỳ thi thử THPT Quốc gia môn Toán lần thứ nhất năm học 2019 – 2020 dành cho học sinh khối 12. Đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Hậu Lộc 2 – Thanh Hóa mã đề 132 gồm có 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi bao gồm nội dung Toán 12 đã học và một số nội dung trọng tâm của chương trình Toán 10 và Toán 11. Trích dẫn đề thi thử Toán THPT Quốc gia 2020 lần 1 trường Hậu Lộc 2 – Thanh Hóa : + Một chiếc cốc hình trụ có bán kính lòng trong đáy R = 10 cm, trong cốc chứa nước có chiều cao h = 4 cm. Người ta bỏ vào cốc một viên bi hình cầu bằng kim loại, lúc này mặt nước trong cốc dâng lên vừa phủ kín viên bi (tham khảo hình vẽ). Bán kính của viên bi gần nhất với kết quả nào dưới đây? + Cho hình chóp tam giác đều S.ABC có cạnh bên tạo với đường cao một góc 30 độ, O là trọng tâm tam giác ABC. Một hình chóp tam giác đều thứ hai O.A’B’C’ có S là tâm của tam giác A’B’C’ và cạnh bên của hình chóp O.A’B’C’ tạo với đường cao một góc 60 độ sao cho mỗi cạnh bên SA, SB, SC lần lượt cắt các cạnh bên OA’, OB’, OC’. Gọi V1 là phần thể tích phần chung của hai khối chóp S.ABC và O.A’B’C’, V2 là thể tích khối chóp S.ABC. Tỉ số V1/V2 bằng? [ads] + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y + z + 4 = 0, đường thẳng (x – 2018)/1 = (y – 2019)/2 = (z – 2020)/2 và mặt cầu (S): x^2 + y^2 + z^2 + 8x – 6y + 4z + 11 = 0. A, B là hai điểm bất kỳ trên (S) sao cho hai mặt phẳng tiếp xúc với (S) tại hai điểm A, B vuông góc với nhau. Gọi A’, B’ là hai điểm thuộc mặt phẳng (P) sao cho AA’ và BB’ cùng song song với d. Giá trị lớn nhất của biểu thức AA’ + BB’ là? + Cho hàm số bậc ba y = f(x) có đồ thị của hàm đạo hàm f'(x) như hình vẽ và f(b) = 1. Số giá trị nguyên của m thuộc [-5;5] để hàm số g(x) = |(f(x))^2 + 4f(x) + m| có đúng năm điểm cực trị là? + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 – 2x – 2y + 4z + 2 = 0 và điểm A(1;1;-1). Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt mặt cầu theo ba đường tròn. Tổng diện tích của ba hình tròn tương ứng là?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Quốc gia 2016 môn Toán trường TH Cao Nguyên - Tây Nguyên lần 3
Đề thi thử Quốc gia 2016 môn Toán trường thực hành Cao Nguyên – Tây Nguyên lần 3 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số bậc 3. Câu 2: Tìm m để hàm số nghịch biến trên đoạn. Câu 3: a) Tìm số phức z thỏa mãn điều kiện. b) Giải bất phương trình logarit. Câu 4: Tính tích phân. Câu 5: Viết phương trình mặt phẳng (P) sao cho đường thẳng d’ là hình chiếu vuông góc của đường thẳng d lên mặt phẳng (P). Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Tìm số hạng trong khai triển nhị thức Niu-tơn. Câu 7: Gọi M là trung điểm của DC. Tính theo a thể tích khối chóp S.ABM và khoảng cách giữa hai đường thẳng SA và BM. Câu 8: Tìm tọa độ các đỉnh A, B, C của tam giác ABC. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị lớn nhất của biểu thức 3 biến P.
Đề thi thử Quốc gia 2016 môn Toán trường B Nghĩa Hưng - Nam Định lần 2
Đề thi thử THPT Quốc gia 2016 môn Toán trường B Nghĩa Hưng – Nam Định lần 2 có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 8 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số phân thức hữu tỉ. Câu 2: Tìm m để hàm số có cực trị. Câu 3: 1) Tìm số phức liên hợp và mô đun của số phức z. 2) Giải phương trình mũ. Câu 4: Tính tích phân. Câu 5: 1) Lập phương trình mặt phẳng (P) qua A và vuông góc với đường thẳng d. 2) Lập phương trình mặt cầu có tâm I thuộc đường thẳng d, bán kính R = 2 và tiếp xúc với mặt phẳng (P). Câu 6: 1) Tính giá trị của biểu thức lượng giác. 2) Tính xác suất để tổng ba số ghi trên ba thẻ đó là một số lẻ. Câu 7: Tính thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng AB và SC theo a (a>0). Câu 8: Tìm tọa độ các điểm A, B, C. Câu 9: Giải hệ phương trình vô tỉ. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 3 biến P.
Đề thi thử Quốc gia 2016 môn Toán trường Nguyễn Khuyến - TP.HCM
Đề thi thử Quốc gia 2016 môn Toán trường Nguyễn Khuyến – TP.HCM có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 8 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số phân thức hữu tỉ. Câu 2: Tìm m để đồ thị (C) cắt trục hoành tại 4 điểm phân biệt có hoành độ đều nhỏ hơn 2. Câu 3: a) Tính môđun của số phức w. b) Giải phương trình logarit. Câu 4: Tính tích phân. Câu 5: Viết phương trình mặt phẳng (Q) chứa d và vuông góc với mặt phẳng (P). Viết phương trình tham số của đường thẳng d’ là hình chiếu vuông góc của đường thẳng d trên (P). Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Chọn ngẫu nhiên từ hộp 4 quả cầu. Tính xác suất để 4 quả cầu lấy ra có đủ cả ba màu. Câu 7: Tính theo a thể tích khối hộp đã cho và khoảng cách từ điểm D đến mặt phẳng (A’BC). Câu 8: Tính diện tích tứ giác ABKC. Câu 9: Giải hệ phương trình vô tỉ. Câu 10: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 3 biến P.
Đề thi thử THPT Quốc gia 2016 môn Toán trường Bình Sơn - Đồng Nai
Đề thi thử Quốc gia 2016 môn Toán trường Bình Sơn – Đồng Nai có đáp án và thang điểm chi tiết. Đề thi và đáp án gồm 6 trang: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số trùng phương. Câu 2: a) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn. b) Xác định giá trị của tham số m để hàm số đạt cực đại tại x = -1. Câu 3: a) Tìm phần thực và phần ảo của z. b) Giải phương trình logarit. Câu 4: Tính tích phân. Câu 5: Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng d. Tìm tọa độ giao điểm của d và (P). Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Tính xác suất sao cho tổng các số trên hai thẻ là số chẵn. Câu 7: Tính theo a thể tích của khối chóp S.ABC và khoảng cách giữa hai đường thẳng SI, AC. Câu 8: Tìm tọa độ các đỉnh A, C biết diện tích tam giác ABC bằng 30 và đỉnh A có hoành độ dương. Câu 9: Giải phương trình vô tỉ. Câu 10: Tìm GTNN của biểu thức 3 biến P.