Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT thành phố Thái Bình

Nội dung Đề khảo sát HSG lớp 7 môn Toán năm 2016 2017 phòng GD ĐT thành phố Thái Bình Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 7 môn Toán năm 2016-2017 phòng GD ĐT thành phố Thái Bình Đề khảo sát HSG lớp 7 môn Toán năm 2016-2017 phòng GD ĐT thành phố Thái Bình Chúng tôi xin trân trọng giới thiệu đến quý thầy cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán lớp 7 năm 2016 – 2017 của phòng GD&ĐT thành phố Thái Bình. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm cho các em tham khảo. Chi tiết đề khảo sát HSG Toán lớp 7 năm 2016 – 2017 phòng GD&ĐT thành phố Thái Bình: 1. Một đội công nhân có 39 người, được chia thành ba nhóm I, II, III. Nếu thêm 1 người vào nhóm I, thêm 2 người vào nhóm II và bớt 3 người của nhóm III thì số công nhân của ba nhóm I, II, III tỉ lệ nghịch với các số 4; 3; 2. Hãy tìm số công nhân của các nhóm. 2. Cho tam giác DEF có D = 60. Tia phân giác của góc E cắt cạnh DF ở P. Tia phân giác của góc F cắt cạnh DE ở Q. Gọi O là giao điểm của PE và QF. 2.1. Tính số đo góc EOF và chứng minh OP = OQ. 2.2. Tìm điều kiện của tam giác DEF để hai điểm P và Q cách đều đường thẳng EF. 3. Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác ABC hai tam giác ABM, ACN vuông cân tại A. Gọi E là giao điểm của BN và CM. 3.1. Chứng minh ABN = AMC và BN = CM. 3.2. Cho BM = 5 cm, CN = 7 cm, BC = 3 cm. Hãy tính độ dài đoạn thẳng MN. Hãy cùng tham gia và thử sức với các bài toán thú vị này để nâng cao kiến thức và kỹ năng Toán của mình nhé!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Hưng Hà - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hưng Hà, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Hưng Hà – Thái Bình : + Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5 m/s, trên cạnh thứ ba với vận tốc 4 m/s, trên cạnh thứ tư với vận tốc 3 m/s. Hỏi độ dài cạnh hình vuông là bao nhiêu, biết rằng tổng thời gian vật chuyển động trên 4 cạnh là 59 giây. + Tìm giá trị nhỏ nhất của biểu thức D = 2022/(2023 – |x – 2024|) với x thuộc Z. + Cho tam giác ABC có AB < AC. Từ trung điểm D của BC vẽ đường vuông góc với tia phân giác của góc A tại H. Đường thẳng này cắt các tia AB tại E và tia AC tại F. Vẽ tia BM song song với EF (M thuộc AC). a) Chứng minh: tam giác ABM cân. b) Chứng minh: BE = CF = MF. c) Qua D kẻ đường thẳng vuông góc với BC cắt tia AH tại I. Chứng minh: IF vuông góc AC.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Ninh Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Ninh Giang, tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 25 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Ninh Giang – Hải Dương : + Cho x, y là các số nguyên thoả mãn. Tính giá trị biểu thức P = (3x + 4y – 5)^2022. + Cho x, y thuộc N* và p là số nguyên tố thoả mãn: x2 + xy = 2x + 2y + p2. Chứng minh rằng: y = p2 – 3. + Cho tam giác ABC có góc A = 60°. Tia phân giác của góc B cắt AC tại D và tia phân giác của góc C cắt AB tại E; BD và CE cắt nhau tại I. a) Tính số đo góc BIC b) Trên cạnh BC lấy điểm F sao cho BF = BE. Chứng ming rằng: FI = DI. c) Trên tia IF lấy điểm K sao cho IK = IB. Vẽ tam giác BCH đều (H và A khác phía với đường thẳng BC). Chứng minh ba điểm I, K, H thẳng hàng.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Chương Mỹ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm tra chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Chương Mỹ, thành phố Hà Nội. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Chương Mỹ – Hà Nội : + Cho biểu thức f(x) = ax2 + bx + c, biết rằng giá trị của biểu thức f(x) tại x = 0, x = 1, x = -1 lần lượt bằng 2023; 2027 và 2025. Tính giá trị của biểu thức f(x) tại x = 2. + Ba phân số có tổng bằng 213/70, các tử của chúng tỉ lệ với 3; 4; 5. Các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó. + Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D (không trùng với B, C), trên tia đối của tia CB lấy điểm E sao cho BD = CE, các đường thẳng vuông góc với BC kẻ từ D và E theo thứ tự cắt các đường thẳng AB, AC lần lượt tại M và N. 1) Chứng minh rằng: DM = EN; 2) Đường thẳng BC cắt MN tại I. Chứng minh I là trung điểm của đoạn thẳng MN; 3) So sánh chu vi của tam giác ABC và chu vi của tam giác AMN; 4) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC.
Đề giao lưu HSG Toán 7 năm 2022 - 2023 phòng GDĐT Chí Linh - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Chí Linh – Hải Dương : + Cho tam giác ABC có 3 góc nhọn và AB < AC. Kẻ BE ⊥ AC tại E, CF ⊥ AB tại F, BE cắt CF tại H. Kẻ HQ // AC, HP // AB (Q AB P AC). a) Chứng minh rằng: AHQ = HAP b) Gọi M là trung điểm của BC. Chứng minh tam giác MEF cân và 𝐴𝐸𝐹 = 𝐴𝐵𝐶. c) Chứng minh rằng: HA + HB + HC < 2 3 (AB + AC + BC). + Một trường THCS làm bể tập bơi cho học sinh có dạng hình hộp chữ nhật với chiều dài 15m, chiều rộng 10m, chiều sâu 1,2m. Người ta lát gạch men các mặt xung quanh và đáy của bể (Coi mạch ghép giữa các viên gạch men không đáng kể). a) Tính diện tích gạch men cần dùng để lát bể bơi đó? b) Cần phải bơm bao nhiêu mét khối nước vào bể để mực nước trong bể thấp hơn mép trên của bể là 20cm (Ban đầu bể không có nước)? + Chứng tỏ phân số có dạng n 4 3n 11 là phân số tối giản với mọi số nguyên n.