Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm

Nội dung Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm Bản PDF - Nội dung bài viết Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệmPHẦN I: TÓM TẮT LÝ THUYẾTPHẦN II: CÁC DẠNG BÀIDạng 1: Liệt kê các kết quả và số phần tử của tập hợpDạng 2: Nhận biết sự kiện liên quan đến phép thửDạng 3: Tính xác suất thực nghiệm Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm Tài liệu dạy thêm học thêm chuyên đề xác suất thực nghiệm là một tài liệu gồm 8 trang, được thiết kế để tổng hợp và tóm tắt lý thuyết, cung cấp phương pháp giải các dạng toán và bài tập chuyên đề xác suất thực nghiệm, nhằm hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm và học thêm môn Toán. PHẦN I: TÓM TẮT LÝ THUYẾT Hướng dẫn tóm tắt lý thuyết giúp học sinh lớp 6 nắm vững kiến thức về xác suất thực nghiệm. Tài liệu đưa ra giải thích và định nghĩa các khái niệm cơ bản như: phép thử, kết quả, tập hợp các kết quả có thể xảy ra, sự kiện, xác suất thực nghiệm. Đồng thời, nó cũng trình bày công thức tính xác suất thực nghiệm để giúp học sinh hiểu rõ cách tính toán. PHẦN II: CÁC DẠNG BÀI Dạng 1: Liệt kê các kết quả và số phần tử của tập hợp Dạng bài này yêu cầu liệt kê tất cả các kết quả có thể xảy ra trong phép thử và đếm số phần tử của tập hợp đó. Liệt kê các kết quả có thể xảy ra là quá trình ghi lại các khả năng xảy ra trong phép thử. Tập hợp tất cả kết quả có thể xảy ra được biểu diễn dưới dạng Xa1a2a3...an. Số phần tử của tập hợp có thể được đếm hoặc ước tính bằng một quy tắc cụ thể. Dạng 2: Nhận biết sự kiện liên quan đến phép thử Trường hợp này, các sự kiện liên quan tới phép thử được mô tả bởi một tập con n(A) của tập hợp kết quả có thể xảy ra trong phép thử. Sự kiện chắc chắn là sự kiện luôn xảy ra khi thực hiện phép thử. Sự kiện không thể là sự kiện không bao giờ xảy ra khi phép thử được thực hiện. Sự kiện có thể là sự kiện cũng có thể xảy ra khi phép thử được thực hiện. Dạng 3: Tính xác suất thực nghiệm Trong dạng bài này, cần tính xác suất thực nghiệm bằng cách lặp lại một hoạt động n lần. Gọi n(A) là số lần sự kiện A xảy ra trong n lần thực hiện hoạt động đó. Công thức tính xác suất thực nghiệm là p(A) = số lần sự kiện A xảy ra / tổng số lần thực hiện hoạt động. Đây được gọi là xác suất thực nghiệm của sự kiện A sau n hoạt động vừa thực hiện. Đây là một tài liệu hữu ích giúp giáo viên và học sinh lớp 6 nắm vững và áp dụng kiến thức về xác suất thực nghiệm. Tài liệu có cấu trúc rõ ràng, đầy đủ và dễ hiểu, giúp học sinh rèn luyện kỹ năng giải các dạng toán liên quan đến xác suất thực nghiệm. Để tải về tài liệu, xin vui lòng nhấp vào đường link sau: http://example.com/file

Nguồn: sytu.vn

Đọc Sách

Chuyên đề góc và số đo góc
Nội dung Chuyên đề góc và số đo góc Bản PDF - Nội dung bài viết Chuyên đề góc và số đo góc Chuyên đề góc và số đo góc Chuyên đề này bao gồm 13 trang tài liệu, cung cấp lý thuyết cơ bản về góc và số đo góc, các dạng toán và bài tập thực hành. Tài liệu cung cấp đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập môn Toán phần Hình học, chương 2: Góc. Mục tiêu của chuyên đề này là: Kiến thức: Hiểu khái niệm về góc, góc nhọn, góc tù, góc vuông, góc bẹt. Nắm được khái niệm về điểm nằm trong góc. Kỹ năng: Biết cách vẽ góc, đặt tên góc, đọc tên góc. Nhận biết điểm nằm trong góc. Nhận biết các loại góc: nhọn, vuông, tù, bẹt. Biết cách đo góc bằng thước đo góc, so sánh hai góc. 1. LÝ THUYẾT TRỌNG TÂM 1.1. Góc: - Góc được tạo ra bởi hai tia chung gốc. Góc chung là đỉnh của góc và hai tia là hai cạnh của góc. - Điểm nằm trong góc khi nằm giữa hai tia của góc. 1.2. Số đo góc: - Đo góc bằng thước đo góc. Đặt thước sao cho tâm thước trùng với gốc của góc, cạnh của góc đi qua vạch 0 trên thước. Góc có số đo là vạch mà cạnh còn lại của góc đi qua. - So sánh hai góc: A = B nếu số đo hai góc bằng nhau, A < B nếu góc A nhỏ hơn góc B. Góc vuông, góc nhọn, góc tù được xác định dựa trên số đo của góc. 2. CÁC DẠNG BÀI TẬP 2.1. Dạng 1: Xác định góc, vẽ hình. 2.2. Dạng 2: Số đo góc, đổi số đo góc, đơn vị đo góc. 2.3. Dạng 3: So sánh góc dựa trên số đo. 2.4. Dạng 4: Nhận biết góc nhọn, góc vuông, góc tù. Chuyên đề góc và số đo góc sẽ giúp học sinh lớp 6 hiểu rõ hơn về các khái niệm và kỹ năng liên quan đến góc và số đo góc, từ đó nâng cao hiệu quả trong việc học tập và áp dụng kiến thức vào thực hành.
Chuyên đề nửa mặt phẳng
Nội dung Chuyên đề nửa mặt phẳng Bản PDF - Nội dung bài viết Chuyên đề nửa mặt phẳng Chuyên đề nửa mặt phẳng Bộ tài liệu này bao gồm 11 trang, cung cấp kiến thức về lý thuyết trọng tâm, các dạng toán và bài tập liên quan đến chuyên đề nửa mặt phẳng. Đặc biệt, tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh lớp 6 trong quá trình học tập chương trình Toán lớp 6 phần Hình học chương 2: Góc. Mục tiêu của chuyên đề này là: - Hiểu về khái niệm nửa mặt phẳng, hai nửa mặt phẳng đối nhau. - Nhận biết được nửa mặt phẳng và gọi tên các nửa mặt phẳng từ hình vẽ. - Nhận biết các điểm thuộc cùng nửa mặt phẳng. - Nhận biết tia nằn giữa hai tia. Trong chuyên đề này, học sinh sẽ được hướng dẫn về các khái niệm cơ bản như: Lí thuyết trọng tâm: Nửa mặt phẳng bờ a là hình gồm đường thẳng a và một phần mặt phẳng bị chia ra bởi a. Hai nửa mặt phẳng đối nhau là hai nửa mặt phẳng có chung một bờ. Điều đáng chú ý là mỗi đường thẳng trên mặt phẳng cũng là bờ chung của hai nửa mặt phẳng đối nhau. Các dạng bài tập: - Dạng 1: Vẽ hình và mô tả về hình vẽ. - Dạng 2: Nhận biết đoạn thẳng có cắt hay không cắt đường thẳng cho trước. - Dạng 3: Nhận biết tia nằm giữa hai tia. Chuyên đề nửa mặt phẳng không chỉ giúp học sinh ôn tập kiến thức mà còn phát triển kỹ năng vẽ hình và mô tả các đoạn thẳng, tia trong không gian. Đây là một chuyên đề quan trọng giúp học sinh nắm vững các kiến thức cơ bản về hình học, chuẩn bị tốt cho các bài toán phức tạp hơn trong tương lai.
Chuyên đề trung điểm của đoạn thẳng
Nội dung Chuyên đề trung điểm của đoạn thẳng Bản PDF - Nội dung bài viết Chuyên đề trung điểm của đoạn thẳng Chuyên đề trung điểm của đoạn thẳng Tài liệu này bao gồm 13 trang, tập trung vào lý thuyết về trung điểm của đoạn thẳng, các dạng toán và bài tập liên quan. Nội dung chi tiết, kèm theo đáp án và lời giải dễ hiểu giúp học sinh lớp 6 hiểu rõ hơn về chương trình Toán lớp 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu của tài liệu này là: + Kiến thức: Học sinh sẽ nhận biết được khái niệm trung điểm của đoạn thẳng. + Kĩ năng: Học sinh sẽ vận dụng được tính chất trung điểm của đoạn thẳng và công thức cộng độ dài hai đoạn thẳng để tính độ dài đoạn thẳng. Họ cũng sẽ chứng minh được một điểm là trung điểm của một đoạn thẳng. I. Lí thuyết trọng tâm 1. Trung điểm của đoạn thẳng: Trung điểm M của đoạn thẳng AB là điểm nằm giữa A, B và cách đều A, B. 2. Cách vẽ trung điểm của đoạn thẳng: - Cách 1: Vẽ theo độ dài. Để vẽ trung điểm M của đoạn thẳng AB a cm, ta vẽ điểm M trên tia AB sao cho AM = MB = a. - Cách 2: Gấp giấy. Gấp giấy sao cho điểm A trùng với điểm B. Nếp gấp cắt đoạn AB tại trung điểm M của AB. II. Các dạng bài tập Dạng 1. Tính độ dài đoạn thẳng: Áp dụng tính chất trung điểm của đoạn thẳng và công thức cộng độ dài hai đoạn thẳng. + Nếu M là trung điểm của đoạn thẳng AB thì 2AB = AM + MB. + Nếu điểm M nằm giữa hai điểm A và B thì MA + MB = AB. Dạng 2. Chứng minh một điểm là trung điểm của một đoạn thẳng: Để chứng minh điểm M là trung điểm của đoạn thẳng AB, ta cần chứng minh: - Cách 1: Điểm M nằm giữa A và B (hoặc AM = MB = AB). - Cách 2: Chứng minh 2AB = MA + MB.