Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề phân thức đại số

Nội dung Chuyên đề phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề Phân thức đại số Chuyên đề Phân thức đại số Chuyên đề này bao gồm tài liệu gồm 14 trang, tập trung vào phân thức đại số trong chương trình Đại số 8 chương 2: Phân thức đại số. Tài liệu tóm tắt lý thuyết cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến phân thức đại số. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao để hỗ trợ học sinh trong quá trình học tập. Trước hết, chúng ta cần hiểu rằng một phân thức đại số được biểu diễn dưới dạng A/B với A và B là các đa thức và B khác 0. Để chứng minh một phân thức luôn có nghĩa, ta có thể sử dụng các cách biến đổi thông dụng để triệt tiêu nhân từ chung và rút gọn phân thức. Để tìm đa thức trong đẳng thức, ta phân tích tử thức và mẫu thức thành nhân tử và sau đó triệt tiêu nhân tử chung. Để tìm giá trị của x sao cho phân thức bằng 0, ta đặt điều kiện cho mẫu khác 0, sau đó nhân mẫu thức với 0 và cho tử bằng 0 để tìm giá trị của x. Cuối cùng, để chứng minh đẳng thức có điều kiện, ta áp dụng tính chất của hai phân thức bằng nhau và dựa vào điều kiện đã cho để lập luận. Qua chuyên đề này, học sinh sẽ được trang bị kiến thức vững chắc về phân thức đại số và có thể áp dụng vào việc giải các bài tập phức tạp trong môn Đại số.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề tứ giác bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 36 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề tứ giác bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh.
Chuyên đề tính giá trị biểu thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề tính giá trị biểu thức bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh.
Chuyên đề tìm GTLN - GTNN của biểu thức bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 66 trang, được biên soạn bởi thầy giáo Trần Đình Hoàng, hướng dẫn phương pháp giải các dạng toán chuyên đề tìm GTLN – GTNN của biểu thức bồi dưỡng học sinh giỏi Toán 8. I. LÝ THUYẾT 2. II. MỘT SỐ PHƯƠNG PHÁP CƠ BẢN 3. Phương pháp 1. Sử dụng phép biến đổi đồng nhất 3. + Dạng 1. Tìm GTNN và GTLN của đa thức bậc hai đơn giản 3. + Dạng 2. Tìm GTNN và GTLN của đa thức bậc bốn đơn giản 10. + Dạng 3. Tìm GTNN và GTLN của biểu thức dạng A/B 14. + Dạng 4. Tìm min – max của biểu thức có điều kiện của biến 31. + Dạng 5. Sử dụng các bất đẳng thức cơ bản 41. + Dạng 6. Tìm min – max bằng cách sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối 44. Phương pháp 2. Phương pháp chọn điểm rơi 47. Phương pháp 3. Sử dụng phương pháp đặt biến phụ 53. Phương pháp 4. Sử dụng biểu thức phụ 56. Phương pháp 5. Phương pháp miền giá trị 59. Phương pháp 6. Phương pháp xét từng khoảng giá trị 61. Phương pháp 7. Phương pháp hình học 64.
Chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 45 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề giải phương trình bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh. Dạng 1. Phương trình có hệ số đối xứng. Dạng 2. Phương trình dạng x a x b x c x d k. Dạng 3. Phương trình đưa được về dạng phương trình trùng phương. Dạng 4. Giải phương trình bằng cách đặt ẩn phụ. Dạng 5. Nhẩm nghiệm đưa về phương trình tích. Dạng 6. Phương trình bậc cao. Dạng 7. Phương trình chứa ẩn ở mẫu. Dạng 8. Phương trình chứa dấu giá trị tuyệt đối.