Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử lớp 11 môn Toán THPT Quốc gia 2019 trường Ngô Quyền Hải Phòng lần 1

Nội dung Đề thi thử lớp 11 môn Toán THPT Quốc gia 2019 trường Ngô Quyền Hải Phòng lần 1 Bản PDF Đề thi thử Toán lớp 11 THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 1 mã đề 134 gồm 05 trang, đề được biên soạn theo hình thức trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 28 tháng 12 năm 2018 nhằm trang bị từ sớm cho các em học sinh khối 11 những kiến thức về kỳ thi THPT Quốc gia môn Toán để các em làm quen, nắm bắt, xác định hướng học tập phù hợp … đề thi có đáp án các mã đề 134, 245, 356, 467, 578, 689, 790, 801. Trích dẫn đề thi thử Toán lớp 11 THPT Quốc gia 2019 trường Ngô Quyền – Hải Phòng lần 1 : + Trong các khẳng định sau , khẳng định nào đúng ? A. Phép thử ngẫu nhiên là phép thử mà ta không đoán trước được kết quả của nó, mặc dù đã biết tập hợp tất cả các kết quả có thể có của phép thử đó. B. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó, mặc dù không biết tập hợp tất cả các kết quả có thể có của phép thử đó. C. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó, khi biết tập hợp tất cả các kết quả có thể có của phép thử đó. D. Phép thử ngẫu nhiên là phép thử mà ta đoán trước được kết quả của nó. [ads] + Cho tứ diện ABCD. Gọi M là trung điểm của cạnh AC, N là điểm thuộc cạnh AD sao cho AN = 2ND. O là một điểm thuộc miền trong của tam giác BCD. Khẳng định nào sau đây đúng? A. Mặt phẳng (OMN) chứa đường thẳng CD. B. Mặt phẳng (OMN) đi qua điểm A. C. Mặt phẳng (OMN) chứa đường thẳng AB. D. Mặt phẳng (OMN) đi qua giao điểm của hai đường thẳng MN và CD. + Trong kỳ thi THPT Quốc Gia môn Toán năm 2019, mỗi phòng thi gồm 24 thí sinh được sắp xếp vào 24 vị trí khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề ôn tập lớp 11 môn Toán tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam
Nội dung Đề ôn tập lớp 11 môn Toán tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam Bản PDF Do ảnh hưởng của tình hình dịch bệnh vi-rút Corona (COVID-19), học sinh khối 11 trường THPT chuyên Hà Nội – Amsterdam vẫn chưa thể đi học trở lại từ sau kỳ nghỉ lễ Tết Nguyên Đán 2020, điều này ảnh hưởng lớn đến việc tiếp thu kiến thức môn Toán lớp 11. Để giúp các em có thể tự ôn tập tại nhà, tổ Toán – Tin học trường THPT chuyên Hà Nội – Amsterdam đã biên soạn bộ đề ôn tập môn Toán lớp 11 giai đoạn tháng 03 năm 2020. Đề ôn tập Toán lớp 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam gồm có 07 trang với 03 đề, chọn lọc các câu hỏi trắc nghiệm và tự luận từ cơ bản đến nâng cao giúp học sinh khối 11 tự ôn luyện. Trích dẫn đề ôn tập Toán lớp 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam : + Tìm mệnh đề sai trong các mệnh đề sau: A. Một hình bình hành có thể là hình chiếu song song của một hình thang nào đó. B. Một hình bình hành có thể xem là hình chiếu song song của một hình vuông nào đó. C. Một tam giác có thể là hình chiếu song song của tam giác đều nào đó. D. Một đoạn thẳng có thể là hình chiếu song song của tam giác nào đó. [ads] + Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G là trọng tâm của tam giác ABC. a) Xác định giao điểm I của A’G với mặt phẳng (AB’C’)? Tính IA’:IG? b) Gọi (P) là mặt phẳng qua G và song song với mặt phẳng (AB’C’). Xác định thiết diện của hình lăng trụ bị cắt bởi mặt phẳng (P)? c) Biết tam giác AB’C’ là tam giác đều cạnh a, tính diện tích thiết diện ở trên? d) Gọi (d) và (d’) lần lượt là giao tuyến của mp (P) với mp (ABB’A’) và mp (ACC’A’). Chứng minh rằng d, d’, AA’ đồng qui. + Cho hình chóp tứ giác đều S.ABCD đỉnh S, cạnh đáy của hình chóp có độ dài bằng 2, chiều cao bằng h. Gọi C1(O; r) là hình cầu tâm O bán kính r nội tiếp hình chóp; gọi C2(K; R) là hình cầu tâm K bán kính R tiếp xúc với 8 cạnh của hình chóp. Biết rằng khoảng cách từ O đến mặt phẳng (ABCD) bằng khoảng cách từ K đến mặt phẳng (ABCD). 1. Chứng minh rằng r = (√(1 + h^2) − 1)/h. 2. Tính giá trị của h, từ đó suy ra thể tích của hình chóp.
Đề ôn tập lớp 11 môn Toán tháng 02/2020 trường THPT chuyên Hà Nội – Amsterdam
Đề khảo sát lớp 11 môn Toán lần 2 năm 2019 2020 trường Tam Dương Vĩnh Phúc
Nội dung Đề khảo sát lớp 11 môn Toán lần 2 năm 2019 2020 trường Tam Dương Vĩnh Phúc Bản PDF Ngày … tháng 01 năm 2020, trường THPT Tam Dương, tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát kiến thức THPT môn Toán lớp 11 lần 2 năm học 2019 – 2020. Đề khảo sát Toán lớp 11 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc mã đề 123 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát Toán lớp 11 lần 2 năm 2019 – 2020 trường Tam Dương – Vĩnh Phúc : + Xét phép thử gieo một con súc sắc cân đối và đồng chất hai lần liên tiếp. Gọi X là biến cố “Lần đầu xuất hiện mặt 6 chấm” và Y là biến cố “Lần thứ hai xuất hiện mặt 6 chấm”. Trong các khẳng định sau, khẳng định nào sai? A. X ∩ Y là biến cố “Tổng số chấm xuất hiện của hai lần gieo bằng 12”. B. X và Y là hai biến cố xung khắc. C. X ∪ Y là biến cố “Ít nhất một lần xuất hiện mặt 6 chấm”. D. X và Y là hai biến cố độc lập. + Trong hội chợ, một công ty sơn muốn xếp 1089 hộp sơn theo số lượng 1, 3, 5 … từ trên xuống dưới (số hộp sơn trên mỗi hàng xếp từ trên xuống dưới là các số lẻ liên tiếp – mô hình như hình bên dưới). Hàng cuối cùng có bao nhiêu hộp sơn? [ads] + Xét một bảng ô vuông gồm 4 x 4 ô vuông. Người ta điền vào mỗi ô vuông đó một trong hai số 1 hoặc −1 sao cho tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0. Hỏi có bao nhiêu cách? + Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD), cạnh AB = 3a, AD = CD = a. Tam giác SAB cân tại S, SA = 2a. Mặt phẳng (P) song song với SA, AB cắt các cạnh AD, BC, SC, SD theo thứ tự tại M, N, P, Q. Đặt AM = x (0 < x < a). Gọi x là giá trị để tứ giác MNPQ ngoại tiếp được đường tròn, bán kính đường tròn đó là? + Cho hai đường thẳng chéo nhau a và b. Lấy các điểm phân biệt A, B thuộc a, C, D thuộc b. Khẳng định nào sau đây đúng? A. AD cắt BC. B. AD và BC cùng nằm trên một mặt phẳng. C. AD song song với BC. D. AD chéo BC. File WORD (dành cho quý thầy, cô):
Đề khảo sát lớp 11 môn Toán lần 1 năm 2019 2020 trường Thuận Thành 1 Bắc Ninh
Nội dung Đề khảo sát lớp 11 môn Toán lần 1 năm 2019 2020 trường Thuận Thành 1 Bắc Ninh Bản PDF Ngày … tháng 01 năm 2020, trường THPT Thuận Thành số 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng lần 1 môn Toán lớp 11 năm học 2019 – 2020. Đề khảo sát Toán lớp 11 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh mã đề 132 gồm có 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 132, 209, 357, 485. Trích dẫn đề khảo sát Toán lớp 11 lần 1 năm 2019 – 2020 trường Thuận Thành 1 – Bắc Ninh : + Để trang trí cho quán trà sữa sắp mở cửa của mình, bạn Giang quyết định tô màu một mảng tường hình vuông cạnh bằng 2m. Phần tô màu dự kiến là các hình vuông nhỏ được đánh số lần lượt là 1, 2, 3 ….. n (các hình vuông được tô màu chấm bi), trong đó cạnh của hình vuông kế tiếp bằng một nửa cạnh hình vuông trước đó (hình vẽ). Giả sử quá trình tô màu của Giang có thể diễn ra nhiều giờ. Hỏi bạn Giang tô màu đến hình vuông thứ mấy thì diện tích của hình vuông được tô bắt đầu nhỏ hơn. + Công ty A chuyên sản xuất một loại sản phẩm, bộ phận sản xuất ước tính rằng với q sản phẩm được sản xuất một tháng thì tổng chi phí sẽ là C(q) = 3q^2 + 64q – 9999 (đơn vị tiền tệ). Giá của mỗi sản phẩm được công ty bán với giá R(q) = 160 – 3q. Hãy xác định số sản phẩm công ty A cần sản xuất trong một tháng (giả sử công ty này bán hết được số sản phẩm mình làm ra) để thu về lợi nhuận cao nhất? [ads] + Trường THPT Thuận Thành 1, tỉnh Bắc Ninh tổ chức trao thưởng cho học sinh nghèo vượt khó. Trường chuẩn bị các phần thưởng là 11 quyển sổ, 10 cặp sách và 9 hộp bút (các sản phẩm cùng loại và giống nhau). Nhà trường chọn 15 học sinh để trao phần thưởng sao cho mỗi học sinh đều nhận được hai phần thưởng khác loại, trong số đó có bạn An và Bình. Tính xác suất để An và Bình nhận được phần thưởng giống nhau. + Cho tứ diện ABCD, gọi E, F lần lượt là trung điểm của AB, CD; G là trọng tâm tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng ACD là? A. Giao điểm của đường thẳng EG và CD. B. Giao điểm của đường thẳng EG và AC. C. Giao điểm của đường thẳng EG và AF. D. Điểm F. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G1, G2 lần lượt là trọng tâm của các tam giác SAB và SAD. Khi đó đường thẳng G1G2? A. cắt mặt phẳng (ABCD). B. song song với mặt phẳng (SCD). C. song song với mặt phẳng (SBC). D. song song với mặt phẳng (ABCD).