Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng hàm số lượng giác và phương trình lượng giác Toán 11 KNTTvCS

Tài liệu gồm 266 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề hàm số lượng giác và phương trình lượng giác trong chương trình môn Toán 11 Kết Nối Tri Thức Với Cuộc Sống (KNTTvCS). MỤC LỤC : BÀI 1 : GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC LƯỢNG GIÁC 5. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 5. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 10. Dạng 1: Đơn vị đo độ và rađian 10. 1. Phương pháp 10. 2. Các ví dụ minh họa 10. Dạng 2: Biểu diễn cung lượng giác trên đường tròn lượng giác 11. 1. Phương pháp 11. 2. Các ví dụ minh họa 11. Dạng 3. Độ dài của một cung tròn 13. 1. Phương pháp giải 13. 2. Các ví dụ minh họa 13. Dạng 4: Tính giá trị của góc còn lại hoặc của một biểu thức lượng giác khi biết một giá trị lượng giác 14. 1. Phương pháp giải 14. 2. Các ví dụ minh họa 14. Dạng 5: Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác 17. 1. Phương pháp giải 17. 2. Các ví dụ minh họa 17. Dạng 6: Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức 19. 1. Phương pháp giải 19. 2. Các ví dụ minh họa 19. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 22. D. BÀI TẬP TRẮC NGHIỆM 27. BÀI 2 : CÔNG THỨC LƯỢNG GIÁC 61. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 61. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 61. Dạng 1: Sử dụng công thức cộng 61. 1. Phương pháp giải 61. 2. Các ví dụ minh họa 62. Dạng 2: Sử dụng công thức nhân đôi và công thức hạ bậc 67. 1. Phương pháp 67. 2. Các ví dụ minh họa 67. Dạng 3: Công thức biến đổi tổng thành tích và tích thành tổng 71. 1. Phương pháp giải 71. 2. Các ví dụ minh họa 71. Dạng 4: Bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác 76. 1. Phương pháp giải 76. 2. Các ví dụ điển hình 76. Dạng 5: Chứng minh đẳng thức, bất đẳng thức trong tam giác 79. 1. Phương pháp giải 79. 2. Các ví dụ minh họa 79. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 86. D. BÀI TẬP TRẮC NGHIỆM 91. BÀI 2 : CÔNG THỨC LƯỢNG GIÁC 119. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 119. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 120. Dạng 1: Sử dụng công thức cộng 120. 1. Phương pháp giải 120. 2. Các ví dụ minh họa 120. Dạng 2: Sử dụng công thức nhân đôi và công thức hạ bậc 125. 1. Phương pháp 125. 2. Các ví dụ minh họa 126. Dạng 3: Công thức biến đổi tổng thành tích và tích thành tổng 130. 1. Phương pháp giải 130. 2. Các ví dụ minh họa 130. Dạng 4: Bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác 135. 1. Phương pháp giải 135. 2. Các ví dụ điển hình 135. Dạng 5: Chứng minh đẳng thức, bất đẳng thức trong tam giác 137. 1. Phương pháp giải 137. 2. Các ví dụ minh họa 138. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 145. D. BÀI TẬP TRẮC NGHIỆM 150. BÀI 3 : HÀM SỐ LƯỢNG GIÁC 178. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 178. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP LỜI GIẢI BÀI TẬP 181. Dạng 1: Tìm tập xác đinh của hàm số 181. 1. Phương pháp 181. 2. Các ví dụ mẫu 181. Dạng 2: Xét tính chẵn lẻ của hàm số 183. 1. Phương pháp 183. 2. Các ví dụ mẫu 184. Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác 186. 1. Phương pháp 186. 2. Ví dụ mẫu 187. Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó 190. 1. Phương pháp 190. 2. Ví dụ mẫu 191. Dạng 5. Đồ thị của hàm số lượng giác 192. 1. Phương pháp 192. 2. Các ví dụ mẫu 193. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 196. D. BÀI TẬP TRẮC NGHIỆM 198. BÀI 4 : PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN 228. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 228. B. CÁC VÍ DỤ RÈN LUYỆN KĨ NĂNG 229. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 234. D. BÀI TẬP TRẮC NGHIỆM 237. GIẢI BÀI TẬP ÔN TẬP CHƯƠNG 1 SÁCH GIÁO KHOA 247. BÀI TẬP TỔNG ÔN CHƯƠNG 1 255.

Nguồn: toanmath.com

Đọc Sách

Phân loại và phương pháp giải bài tập cung và góc lượng giác, công thức lượng giác
Tài liệu gồm 110 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập cung và góc lượng giác, công thức lượng giác, giúp học sinh lớp 10 tham khảo khi học chương trình Đại số 10 chương 6 (Toán 10). BÀI 1 . CUNG VÀ GÓC LƯỢNG GIÁC. Dạng toán: Xác định các yếu tố liên quan đến cung và góc lượng giác. BÀI 2 . GIÁ TRỊ LƯỢNG GIÁC MỘT CUNG. Dạng toán 1: Biểu diễn góc và cung lượng giác. Dạng toán 2: Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác. Dạng toán 3: Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức. Dạng toán 4: Tính giá trị của một biểu thức lượng giác khi biết một giá trị lượng giác. BÀI 3 . CÔNG THỨC LƯỢNG GIÁC. Dạng toán 1: Tính giá trị lượng giác, biểu thức lượng giác. Dạng toán 2: Xác định giá trị của một biểu thức lượng giác có điều kiện. Dạng toán 3: Chứng minh đẳng thức, đơn giản biểu thức lượng giác và chứng minh biểu thức lượng giác không phụ thuộc vào biến. Dạng toán 4: Bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác. Dạng toán 5: Chứng minh đẳng thức, bất đẳng thức trong tam giác.
Lý thuyết, các dạng toán và bài tập cung và góc lượng giác, công thức lượng giác
Tài liệu gồm 76 trang, tóm tắt lý thuyết, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề cung và góc lượng giác, công thức lượng giác, giúp học sinh lớp 10 tham khảo khi học chương trình Đại số 10 chương 6 (Toán 10). 1. CUNG VÀ GÓC LƯỢNG GIÁC I. Tóm tắt lí thuyết. 1. Khái niệm cung và góc lượng giác. 2. Số đo của cung và góc lượng giác. II. Các dạng toán. Dạng 1. Liên hệ giữa độ và rađian. Dạng 2. Độ dài cung lượng giác. Dạng 3. Biểu diễn cung lượng giác trên đường tròn lượng giác. 2. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT CUNG I. Tóm tắt lí thuyết. 1. Định nghĩa. 2. Hệ quả. 3. Ý nghĩa hình học của tang và côtang. 4. Công thức lượng giác cơ bản. 5. Giá trị lượng giác của các cung có liên quan đặc biệt. II. Các dạng toán. Dạng 1. Dấu của các giá trị lượng giác. Dạng 2. Tính giá trị lượng giác của một cung. Dạng 3. Sử dụng cung liên kết để tính giá trị lượng giác. Dạng 4. Rút gọn biểu thức và chứng minh đẳng thức. 3. CÔNG THỨC LƯỢNG GIÁC I. Công thức cộng. Dạng 1. Công thức cộng. II. Công thức nhân đôi. III. Các dạng toán. Dạng 2. Tính các giá trị lượng giác của các góc cho trước. Dạng 3. Rút gọn biểu thức cho trước. Dạng 4. Chứng minh đẳng thức lượng giác. IV. Công thức biến đổi. Dạng 5. Biến đổi một biểu thức thành một tổng hoặc thành một tích. Dạng 6. Chứng minh một đẳng thức lượng giác có sử dụng nhóm công thức biến đổi. Dạng 7. Dùng công thức biến đổi để tính giá trị (rút gọn) của một biểu thức lượng giác. Dạng 8. Nhận dạng tam giác. Một số hệ thức trong tam giác. 4. ĐỀ KIỂM TRA CHƯƠNG VI I. Đề số 1a. II. Đề số 1b. III. Đề số 2a. IV. Đề số 2b. V. Đề số 3a. VI. Đề số 3b. VII. Đề số 4a. VIII. Đề số 4b. IX. Đề số 5a. X. Đề số 5b.
Tuyển tập 198 câu VDC hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 83 trang, được biên soạn bởi nhóm tác giả Tư Duy Mở, tuyển tập 198 câu vận dụng cao (VD – VDC) hàm số lượng giác và phương trình lượng giác, có đáp án và lời giải chi tiết; giúp học sinh khối 11 rèn luyện khi học tập chương trình Đại số và Giải tích 11 chương 1. Trích dẫn tài liệu tuyển tập 198 câu VDC hàm số lượng giác và phương trình lượng giác: + Gọi m/n là giá trị lớn nhất của a để bất phương trình √a3(x − 1)2 + √a(x − 1)2 6√4a3sin πx2 có ít nhất một nghiệm, trong đó m, n là các số nguyên dương và m/n là phân số tối giản. Tính giá trị của biểu thức P = 22m + n. + Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình cos 4x + 6 sinx cos x = m có hai nghiệm phân biệt trên đoạn h0;π4i. + Có bao nhiêu điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình (1 + sinx + cos x)tan(π − x) = sin 2x + 2 sinx + 2 cos x + 2?
Chuyên đề hàm số lượng giác và phương trình lượng giác - Dương Minh Hùng
Tài liệu gồm 89 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, tóm tắt lý thuyết, phân dạng và tuyển chọn các bài tập trắc nghiệm chuyên đề hàm số lượng giác và phương trình lượng giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học chương trình Đại số và Giải tích 11 chương 1: Hàm số lượng giác và phương trình lượng giác. Bài 1 . Hàm số lượng giác. + Dạng toán 1. Tìm tập xác định của hàm số lượng giác. + Dạng toán 2. Tính tuần hoàn, chu kỳ của hàm số lượng giác. + Dạng toán 3. Tính chẵn, lẻ của hàm số lượng giác. + Dạng toán 4. Giá trị lớn nhất và giá trị nhỏ nhất (GTLN – GTNN) của hàm số lượng giác. Bài 2 . Phương trình lượng giác cơ bản. + Dạng toán 1. Phương trình sinx = a. + Dạng toán 2. Phương trình cosx = a. + Dạng toán 3. Phương trình tanx = a. + Dạng toán 4. Phương trình cotx = a. Bài 3 . Một số dạng phương trình lượng giác thường gặp. + Dạng toán 1. Phương trình bậc nhất theo một hàm số lượng giác. + Dạng toán 2. Phương trình bậc hai theo một hàm số lượng giác. + Dạng toán 3. Phương trình a.sinx + b.cosx = c. + Dạng toán 4. Phương trình lượng giác có chứa tham số.