Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG tỉnh lớp 11 môn Toán THPT năm 2018 2019 sở GD ĐT Nghệ An (Bảng A)

Nội dung Đề thi HSG tỉnh lớp 11 môn Toán THPT năm 2018 2019 sở GD ĐT Nghệ An (Bảng A) Bản PDF Thứ Bảy ngày 16 tháng 03 năm 2019, sở Giáo dục và Đào tạo tỉnh Nghệ An tổ chức kỳ thi chọn học sinh giỏi tỉnh lớp 11 cấp THPT môn Toán năm học 2018 – 2019, Sytu giới thiệu đến bạn đọc nội dung đề thi HSG tỉnh Toán lớp 11 THPT năm 2018 – 2019 sở GD&ĐT Nghệ An (Bảng A). Đề thi HSG tỉnh Toán lớp 11 THPT năm 2018 – 2019 sở GD&ĐT Nghệ An (Bảng A) được biên soạn theo hình thức tự luận với 05 bài toán, thời gian làm bài 150 phút (không kể thời gian phát đề). [ads] Trích dẫn đề thi HSG tỉnh Toán lớp 11 THPT năm 2018 – 2019 sở GD&ĐT Nghệ An (Bảng A) : + Gọi S là tập hợp tất cả các số tự nhiên gồm 4 chữ số đội một khác nhau được chọn từ các số 1, 2, 3, 4, 5, 6, 7, 8, 9. Xác định số phần tử của S. Lấy ngẫu nhiên một số từ S, tính xác suất để số được chọn là số chia hết cho 11 và tổng 4 chữ số của nó cũng chia hết cho 11. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật ABCD có AB = 2BC. Gọi M là trung điểm của đoạn AB và G là trọng tâm tam giác ACD. Viết phương trình đường thẳng AD, biết rằng M(1;2) và G(5/3;0). + Cho hình chóp S.ABCD có đáy ABCD là hình thang cân (AB // CD) nội tiếp đường tròn tâm O và góc SBA = SCA = 90°. Gọi M là trung điểm của cạnh SA. a) Chứng minh rằng MO ⊥ (ABCD). b) Gọi φ là góc giữa hai đường thẳng AB và SC. Chứng minh rằng cosφ < BC/SA.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Hà Tĩnh
Nội dung Đề thi học sinh giỏi tỉnh lớp 11 môn Toán năm 2020 2021 sở GD ĐT Hà Tĩnh Bản PDF Đề thi học sinh giỏi tỉnh Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, kỳ thi được diễn ra vào sáng thứ Sáu ngày 12 tháng 03 năm 2021. Trích dẫn đề thi học sinh giỏi tỉnh Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Hà Tĩnh : + Một chuồng có 3 con thỏ trắng và 4 con thỏ xám. Người ta bắt ngẫu nhiên lần lượt từng con ra khỏi chuồng cho đến khi bắt được cả 3 thỏ trắng thì mới dừng lại. Tính xác suất để người đó phải bắt ít nhất 5 lần. + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC). Gọi M là trung điểm SB, N là điểm thỏa mãn NS + 2NC = 0. Tính độ dài SA biết AN vuông góc với CM. + Cho hình lăng trụ ABC.A’B’C’. Gọi I là trung điểm B’C’ và M là điểm thuộc cạnh A’C’. Biết AM cắt A’C tại P, B’M cắt A’I tại Q. Tìm vị trí điểm M trên cạnh A’C’ sao cho diện tích tam giác A’PQ ‘ bằng 2/9 diện tích tam giác A’CI.
Đề thi chọn HSG lớp 11 môn Toán năm học 2019 2020 trường THPT thị xã Quảng Trị
Nội dung Đề thi chọn HSG lớp 11 môn Toán năm học 2019 2020 trường THPT thị xã Quảng Trị Bản PDF Ngày 12 tháng 06 năm 2020, trường THPT thị xã Quảng Trị tổ chức kỳ thi chọn học sinh giỏi văn hóa lớp 11 môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán lớp 11 năm học 2019 – 2020 trường THPT thị xã Quảng Trị gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài thi là 180 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn HSG Toán lớp 11 năm học 2019 – 2020 trường THPT thị xã Quảng Trị : + Một tổ gồm 10 học sinh gồm 6 học sinh nam và 4 học sinh nữ trong đó có hai học sinh nữ tên Trang và Thủy. Xếp ngẫu nhiên 10 học sinh trên thành một hàng ngang. Tính xác suất để xếp được một hàng ngang mà hai học sinh nữ Trang và Thủy luôn đứng cạnh nhau, đồng thời các học sinh nữ còn lại không đứng cạnh nhau và cũng không đứng cạnh Trang và Thủy. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, góc ABC = 30 độ và BC = 2a. Gọi H là hình chiếu vuông góc của A lên BC. Biết hai mặt phẳng (SHA) và (SBC) cùng vuông góc với mặt phẳng (ABC), đồng thời SA tạo với mặt phẳng (ABC) một góc bằng 60 độ. a) Tính góc tạo bởi SA và mặt phẳng (SBC). b) Tính khoảng cách từ B đến mặt phẳng (SAC) theo a. [ads] + Trong mặt phẳng Oxy, cho tam giác ABC vuông tại A. Gọi H là hình chiếu vuông góc của A trên BC, các điểm M, N lần lượt là trung điểm của HB và HC; điểm K là trực tâm tam giác AMN. a) Gọi I là trung điểm của AH. Chứng minh rằng K là trung điểm của IH. b) Tìm tọa độ điểm A; biết M(2;-1), K(-1/2;1/2) và điểm A nằm trên đường thẳng x + 2y + 4 = 0 đồng thời điểm A có tung độ âm.