Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề giải toán bằng cách lập phương trình

Nội dung Chuyên đề giải toán bằng cách lập phương trình Bản PDF - Nội dung bài viết Chuyên Đề Giải Toán Bằng Cách Lập Phương Trình Chuyên Đề Giải Toán Bằng Cách Lập Phương Trình Tài liệu này bao gồm 39 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, từ cơ bản đến nâng cao, trong chuyên đề giải toán bằng cách lập phương trình. Bạn sẽ được tuyển chọn các bài tập có độ khó phù hợp, và hỗ trợ trong quá trình học tập chương trình Đại số 8 chương 3: Phương trình bậc nhất một ẩn. I. Kiến Thức Cần Nhớ Bước 1: Lập phương trình: Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số. Biểu diễn các đại lượng chưa biết theo ẩn và đã biết. Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình. Bước 3: Kiểm tra nghiệm của phương trình để xác định nghiệm nào thỏa mãn điều kiện của ẩn. II. Bài Tập Minh Họa Phương pháp chung: Bước 1: Kẻ bảng nếu cần, gọi ẩn, kèm theo đơn vị và điều kiện cho ẩn. Bước 2: Giải thích từng ô trong bảng để lập phương trình bậc hai. Bước 3: Giải phương trình, đối chiếu điều kiện và trả lời bài toán. Các dạng toán: Dạng 1: Toán chuyển động. Dạng 2: Toán năng suất. Dạng 3: Toán làm chung công việc. Dạng 4: Toán có nội dung hình học. Dạng 5: Dạng toán có chứa tham số. Dạng 6: Toán về tỉ lệ chia phần. Dạng 7: Dạng toán liên quan đến số học. Dạng 8: Dạng toán có nội dung vật lý, hóa học. Hãy sẵn sàng thách thức bản thân và rèn luyện kỹ năng giải toán bằng cách lập phương trình với tài liệu hữu ích này!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề đa giác, đa giác đều
Nội dung Chuyên đề đa giác, đa giác đều Bản PDF - Nội dung bài viết Chuyên đề đa giác, đa giác đềuTóm tắt lý thuyếtBài tập và các dạng toánA. Các dạng bài minh họaB. Phiếu bài tự luyện Chuyên đề đa giác, đa giác đều Tài liệu này bao gồm 11 trang, cung cấp tóm tắt lý thuyết về trọng tâm, phân dạng và hướng dẫn giải các dạng toán liên quan đến đa giác và đa giác đều. Ngoài ra, tài liệu này cũng tuyển chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề này, với đáp án và lời giải chi tiết. Đây là một công cụ hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8, đặc biệt là chương 2 với nội dung về đa giác và diện tích đa giác. Tóm tắt lý thuyết 1. Đa giác: Đa giác A1A2...An là hình gồm n đoạn thẳng A1A2, A2A3,... AnA1, trong đó không có hai đoạn thẳng nào có một điểm chung và không nằm trên cùng một đường thẳng. 2. Đa giác lồi: Đa giác lồi luôn nằm trong một nửa mặt phẳng có bờ là một đường thẳng chứa bất kỳ cạnh nào của đa giác. 3. Các khái niệm khác: - Một đa giác có n đỉnh được gọi là n-giác. - Đường chéo của đa giác là các đoạn thẳng nối hai đỉnh không kề nhau của đa giác đó. - Đa giác đều là đa giác có tất cả các cạnh bằng nhau và tất cả các góc bằng nhau. Bài tập và các dạng toán A. Các dạng bài minh họa - Dạng 1: Nhận biết đa giác. Phương pháp giải: Sử dụng định nghĩa đa giác. - Dạng 2: Tính chất về góc của đa giác. Phương pháp giải: Sử dụng công thức tính tổng góc trong đa giác. - Dạng 3: Tính chất về đường chéo của đa giác. Phương pháp giải: Xét số đường chéo xuất phát từ một đỉnh. - Dạng 4: Đa giác đều. Phương pháp giải: Sử dụng định nghĩa và công thức tính góc của đa giác đều. B. Phiếu bài tự luyện Đề cung cấp phiếu bài tập tự luyện để học sinh có thể tự ôn tập và kiểm tra kiến thức của mình trong chuyên đề này.
Chuyên đề hình vuông
Nội dung Chuyên đề hình vuông Bản PDF - Nội dung bài viết Chuyên đề hình vuông Chuyên đề hình vuông Tài liệu này bao gồm 17 trang, tóm tắt những kiến thức quan trọng về hình vuông cần nắm vững, cung cấp các phân dạng và hướng dẫn cách giải các dạng toán liên quan. Ngoài ra, tài liệu còn tuyển chọn các bài tập từ cơ bản đến nâng cao về chuyên đề hình vuông, đi kèm đáp án và lời giải chi tiết. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8, chương 1: Tứ giác. Nó cung cấp kiến thức cần nhớ, các dạng bài tập minh họa và phiếu bài tập rèn luyện để học sinh tự rèn luyện và nắm vững kiến thức. Trong tài liệu này, người đọc sẽ được hướng dẫn cách nhận dạng hình vuông và cách giải các bài tập liên quan. Đồng thời, tài liệu cũng cung cấp phương pháp để chứng minh các quan hệ bằng nhau, song song, vuông góc, và thẳng hàng trong hình vuông. Ngoài ra, tài liệu còn giúp người đọc hiểu rõ về điều kiện để một hình trở thành hình vuông và cách giải các bài tập liên quan. Bằng cách sử dụng các dấu hiệu nhận biết hình vuông và áp dụng các tính chất của hình vuông, người đọc sẽ có thể dễ dàng tìm ra đáp án đúng cho các câu hỏi trong bài tập. Trên tất cả, tài liệu này đem đến sự hỗ trợ toàn diện cho học sinh, giúp họ nắm vững kiến thức và phát triển kỹ năng giải bài tập trong chuyên đề hình vuông một cách dễ dàng và hiệu quả.
Chuyên đề hình thoi
Nội dung Chuyên đề hình thoi Bản PDF - Nội dung bài viết Chuyên đề hình thoi Chuyên đề hình thoi Tài liệu này bao gồm 32 trang, tập trung vào việc tóm tắt lý thuyết quan trọng, phân loại các dạng toán và hướng dẫn cách giải các bài tập liên quan đến chuyên đề hình thoi. Ngoài ra, tài liệu cũng chọn lọc các bài tập từ cơ bản đến nâng cao trong chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT Trong phần này, chúng ta sẽ tìm hiểu về các tính chất cơ bản của hình thoi và cách chứng minh chúng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Chứng minh tứ giác là hình thoi bằng cách sử dụng các dấu hiệu nhận biết. Ví dụ như tứ giác có bốn cạnh bằng nhau là hình thoi. Dạng 2. Vận dụng tính chất của hình thoi để chứng minh các tính chất hình học khác. Ví dụ như hình thoi là tứ giác có bốn cạnh bằng nhau và có hai đường chéo vuông góc với nhau. Dạng 3. Tìm điều kiện để tứ giác là hình thoi bằng cách áp dụng các tính chất của hình thoi. Dạng 4. Tổng hợp các dạng toán liên quan đến hình thoi. B. PHIẾU BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY Phần này chứa những bài toán nâng cao giúp phát triển tư duy trong việc nhận biết và giải quyết các bài toán liên quan đến hình thoi. C. PHIẾU BÀI TỰ LUYỆN Chứa các bài tập tự luyện giúp học sinh ôn tập và củng cố kiến thức về hình thoi, từ việc chứng minh tứ giác là hình thoi đến việc áp dụng kiến thức để giải toán.
Chuyên đề đường thẳng song song với một đường thẳng cho trước
Nội dung Chuyên đề đường thẳng song song với một đường thẳng cho trước Bản PDF - Nội dung bài viết Chuyên đề đường thẳng song song với một đường thẳngTóm tắt lý thuyếtBài tập và các dạng toán Chuyên đề đường thẳng song song với một đường thẳng Chuyên đề này bao gồm 9 trang tài liệu, tập trung vào lý thuyết cơ bản cần hiểu, cách phân loại và hướng dẫn giải các dạng toán liên quan đến đường thẳng song song với một đường thẳng cho trước. Sách tuyển chọn các bài tập từ dễ đến khó, có đáp án và lời giải chi tiết, giúp học sinh nắm vững kiến thức và áp dụng vào chương trình Hình học lớp 8 chương 1: Tứ giác. Tóm tắt lý thuyết - Khoảng cách giữa hai đường thẳng song song được xác định là khoảng cách từ một điểm trên đường thẳng này đến đường thẳng kia. - Các điểm cách đường thẳng b một khoảng h nằm trên hai đường thẳng song song với b và đều cách b một khoảng h. - Tập hợp các điểm cách một đường thẳng cố định một khoảng không đổi là hai đường thẳng song song với đường đó và cách đường đó một khoảng bằng h. - Ghi chú: Tập hợp các điểm cách một điểm O cố định một khoảng bằng r là đường tròn (O, r). Bài tập và các dạng toán A. Các dạng bài tập cơ bản - nâng cao Dạng 1: Phát biểu và vận dụng tính chất, không chứng minh. Dạng 2: Tìm tập hợp điểm thỏa mãn điều kiện cho trước. Dạng 3: Tổng hợp các dạng toán trên. B. Bài tập rèn luyện Đây là tài liệu hữu ích giúp học sinh nắm vững kiến thức về đường thẳng song song và áp dụng vào giải các bài tập thực hành đa dạng.