Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập bất đẳng thức - Diễn đàn Mathscope

Tài liệu gồm 211 trang hướng dẫn giải các bài toán bất đẳng thức hay và khó, các bài toán trong tài liệu đều được giải chi tiết. Biển vẫn mãi nhấp nhô với những con sóng dạt vào bờ, thuyền vẫn mãi lênh đênh theo từng con sóng đi vào đại dương, và trong đất liền cuộc sống vẫn có nhiều bất cập còn đang xảy ra …. tất cả những điều đó đều là các bất đẳng thức trong phạm trù đặc thù của từng lĩnh vực. Trong toán học cũng vậy nói đến bất đẳng thức là chúng ta nói đến một lớp bài toán khó mà ẩn chứa bên trong có nhiều lời giải đẹp lạ kì làm say đắm biết bao nhiêu người. Trong thời đại công nghệ thông tin với việc kết nối internet bạn có thể giao lưu học hỏi được rất nhiều về các phương pháp làm bài bất đẳng thức, hoặc học hỏi với nhiều cuốn sách về bất đẳng thức đang bày bán trên thị trường nhưng để có một cuốn sách bất đẳng thức hay với sự hội tụ tinh hoa kiến thức của nhiều người thì điều đó chính là điểm mạnh của cuốn sách bất đẳng thức mà các bạn đang cầm trên tay. Tuyển Tập Bất Đẳng Thức với khoảng bốn trăm bài toán bất đẳng thức chọn lọc được gửi tới từ các bạn trẻ, các thầy cô giáo yêu toán trên mọi miền của tổ quốc, ở đó bao gồm các bài toán bất đẳng thức mới sáng tạo, các bài toán bất đẳng thức khó, các bài toán bất đẳng thức hay và thú vị mà các bạn trẻ muốn chia sẻ với mọi người. Điều đó tạo nên sự hấp dẫn, tính cập nhật và thời đại của cuốn sách này. [ads] Bạn đọc hãy nhâm nhi với những lời giải hay, những ý tưởng độc đáo, những sáng kiến lạ kì trong cách giải từng bài toán để từ đó rút kinh nghiệm học tập cho mình, giúp cho bạn thêm yêu, thêm tin vào việc giải nhiều bài toán bất đẳng thức. Nội dung tài liệu : Phần 1. Các bất đẳng thức kinh điển 1. Bất đẳng thức giữa trung bình cộng và trung bình nhân (AM – GM) 2. Bất đẳng thức giữa trung bình cộng và trung bình điều hoà (AM – HM) 3. Bất đẳng thức Cauchy – Schwarz 4. Bất đẳng thức Holder 5. Bất đẳng thức Chebyshev 6. Bất đẳng thức Minkowski 7. Bất đẳng thức Schur 8. Bất đẳng thức Vornicu – Schur 9. Bất đẳng thức Bernoulli 10. Ba tiêu chuẩn SOS thường gặp Phần 2. Một số đánh giá quen thuộc  Phần 3. Tuyển tập bất đẳng thức

Nguồn: toanmath.com

Đọc Sách

Tư duy dồn biến trong bất đẳng thức - Đoàn Trí Dũng vs Hà Hữu Hải
Tài liệu Tư duy dồn biến trong bất đẳng thức của 2 thầy Đoàn Trí Dũng và Hà Hữu Hải gồm 18 trang với 13 bài toán bất đẳng thức được xử lý bằng phương pháp dồn biến. Tài liệu này được sử dụng trong khóa học 24h học toán – chiến thắng 3 câu phân loại. I. Giới thiệu cơ bản về bất đẳng thức Cauchy (AM – GM) II. Các hệ quả của bất đẳng thức Cauchy (AM – GM) III. Sử dụng bất đẳng thức AM – GM đưa về biến cần tìm [ads]
Kĩ thuật sử dụng bất đẳng thức Cô-si - Nguyễn Cao Cường
NHỮNG QUY TẮC CHUNG TRONG CHỨNG MINH BẤT ĐẲNG THỨC SỬ DỤNG BẤT ĐẲNG THỨC CÔ SI + Quy tắc song hành: hầu hết các BĐT đều có tính đối xứng do đó việc sử dụng các chứng minh một cách song hành, tuần tự sẽ giúp ta hình dung ra được kết quả nhanh chóng và định hướng cách giả nhanh hơn. + Quy tắc dấu bằng: dấu bằng “ = ” trong BĐT là rất quan trọng. Nó giúp ta kiểm tra tính đúng đắn của chứng minh. Nó định hướng cho ta phương pháp giải, dựa vào điểm rơi của BĐT. Chính vì vậy mà khi dạy cho học sinh ta rèn luyện cho học sinh có thói quen tìm điều kiện xảy ra dấu bằng mặc dù trong các kì thi học sinh có thể không trình bày phần này. Ta thấy được ưu điểm của dấu bằng đặc biệt trong phương pháp điểm rơi và phương pháp tách nghịch đảo trong kỹ thuật sử dụng BĐT Cô Si. [ads] + Quy tắc về tính đồng thời của dấu bằng: không chỉ học sinh mà ngay cả một số giáo viên khi mới nghiên cứu và chứng minh BĐT cũng thương rất hay mắc sai lầm này. Áp dụng liên tiếp hoặc song hành các BĐT nhưng không chú ý đến điểm rơi của dấu bằng. Một nguyên tắc khi áp dụng song hành các BĐT là điểm rơi phải được đồng thời xảy ra, nghĩa là các dấu “ = ” phải được cùng được thỏa mãn với cùng một điều kiện của biến. + Quy tắc biên: Cơ sở của quy tắc biên này là các bài toán quy hoạch tuyến tính, các bài toán tối ưu, các bài toán cực trị có điều kiện ràng buộc, giá trị lớn nhất nhỏ nhất của hàm nhiều biến trên một miền đóng. Ta biết rằng các giá trị lớn nhất, nhỏ nhất thường xảy ra ở các vị trí biên và các đỉnh nằm trên biên. + Quy tắc đối xứng: các BĐT thường có tính đối xứng vậy thì vai trò của các biến trong BĐT là như nhau do đó dấu “ = ” thường xảy ra tại vị trí các biến đó bằng nhau. Nếu bài toán có gắn hệ điều kiện đối xứng thì ta có thể chỉ ra dấu “ = ” xảy ra khi các biến bằng nhau và mang một giá trị cụ thể. Chiều của BĐT : “ ≥ ”, “ ≤ ” cũng sẽ giúp ta định hướng được cách chứng minh: đánh giá từ TBC sang TBN và ngược lại. Trên là 5 quy tắc sẽ giúp ta có định hướng để chứng minh BĐT, học sinh sẽ thực sự hiểu được các quy tắc trên qua các ví dụ và bình luận ở phần sau.
Áp dụng kỹ thuật hệ số bất định giải bất đẳng thức - Vũ Hoàng vs Bá Cẩn
Có bao nhiêu điều bí ẩn mà bạn chưa biết đến? Câu trả lời là rất rất nhiều và đôi khi bạn cảm thấy bực bội, khó chịu khi không thể tìm ra một lời giải thích thỏa đáng cho bí ẩn nào đó. Nhưng bạn hãy quan niệm rằng đằng sau bất kì một điều gì luôn hàm chứa một ý nghĩa nhất định. Và cũng không phải ngẫu nhiên mà sự lí giải lại được hình thành. Trong thế giới bất đẳng thức cũng vậy. Đôi khi bạn không thể hiểu được tại sao người ta lại có thể tìm ra một lời giải trông có vẻ “kì cục” như thế!!! Phải chăng là lần mò và may rủi lắm mới tìm ra được? Câu trả lời lại một lần nữa được nhắc lại: mỗi lời giải đều có sự giải thích của riêng bản thân nó. Việc tìm ra lời giải đó phải đi qua một quá trình lập luận, thử, sai và đúng. Trong chuyên đề nho nhỏ này chúng tôi muốn giới thiệu đến các bạn một kĩ thuật cơ bản nhưng không kém phần hiệu quả trong việc chứng minh một số dạng của bất đẳng thức. Nó không giúp ta giải quyết tất cả các bài toán mà chỉ giúp ta tìm ra những lời giải ngắn gọn và ấn tượng trong một lớp bài toán nào đó. Một số bài toán tuy dễ đối với phương pháp này nhưng lại là khó đối với kỹ thuật kia, đây cũng là điều hiển nhiên và dễ hiểu. [ads] Tài liệu Áp dụng kỹ thuật hệ số bất định giải bất đẳng thức (viết tắt là U.C.T) của 2 tác giả Nguyễn Thúc Vũ Hoàng và Võ Quốc Bá Cẩn gồm 33 trang với các nội dung chính sau: + Phần 1. Bài toán mở đầu. + Phần 2. Khởi đầu cùng một số bài toán cơ bản. + Phần 3. Kĩ thuật chuẩn hóa và U.C.T + Phần 4. U.C.T và kỹ thuật phân tách các trường hợp + Phần 5. Kết hợp bất đẳng thức Vornicu Schur với U.C.T + Phần 6. Một dạng biểu diễn thú vị + Phần 7. Giải quyết một số bài toán mà điều kiện liên quan mật thiết đến nhau + Phần 8. U.C.T mở rộng + Phần 9. Lời kết + Phần 10. Bài tập áp dụng
Chuyên đề bất đẳng thức xoay vòng - Nguyễn Văn Cương
Trong bất đẳng thức cổ điển thì bất đẳng thức xoay vòng là một nội dung hay và khó. Có những bất đẳng thức có dạng khá đơn giản nhưng phải mất hàng chục năm, nhiều nhà toán học mới giải quyết được. Hoàn toàn tự nhiên ta thấy còn rất nhiều dạng bất đẳng thức xoay vòng khác thì bất đẳng thức là gì, khi nào đúng, khi nào sai hoặc luôn luôn đúng. Trong bài luận văn này chúng tôi xây dựng được một dạng bất đẳng thức xoay vòng tổng quát mà các trường hợp riêng là những bài toán khó và rất khó có thể sử dụng trong những đề thi học sinh giỏi. Tài liệu Chuyên đề bất đẳng thức xoay vòng của sinh viên Nguyễn Văn Cương là khóa luận tốt nghiệp toán sơ cấp được hoàn thành dưới sự sướng dẫn của TS Nguyễn Vũ Lương gồm 66 trang. [ads] Luận văn này gồm có 2 chương: Chương 1: Bất đẳng thức xoay vòng (Trình bày những kết quả đã có về các bài bất đẳng thức phân thức) + Bất đẳng thức Schurs và hệ quả + Bất đẳng thức xoay vòng khác trong tam giác + Sử dụng bất đẳng thức Cauchy chứng minh một số dạng bất đẳng thức xoay vòng + Bất đẳng thức xoay vòng phân thức Chương 2: Một dạng bất đẳng thức xoay vòng (Xây dựng bất đẳng thức với các trường hợp đơn giản, tổng quát bài toán)