Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề làm quen với xác suất của biến cố lớp 7 môn Toán

Nội dung Chuyên đề làm quen với xác suất của biến cố lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề làm quen với xác suất của biến cố lớp 7 môn ToánPHẦN I. TÓM TẮT LÍ THUYẾTPHẦN II. CÁC DẠNG BÀIDạng 1. Xác suất của biến cố đồng khả năng xảy raDạng 2. Áp dụng công thức tính xác suấtDạng 3. Xác suất của biến cố chắc chắn, không thểDạng 4. Xác suất của biến cố ngẫu nhiênPHẦN III. BÀI TẬP TỰ LUYỆN Chuyên đề làm quen với xác suất của biến cố lớp 7 môn Toán Tài liệu này bao gồm 44 trang, chia thành hai phần chính: Tóm tắt lí thuyết và Hướng dẫn giải các dạng bài tập chuyên đề làm quen với xác suất của biến cố trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT Trong phần này, chúng ta sẽ được tóm tắt lý thuyết về xác suất của biến cố đồng khả năng xảy ra và các quy tắc cơ bản trong tính toán xác suất. PHẦN II. CÁC DẠNG BÀI Phần này chứa các dạng bài tập thực hành nhằm giúp học sinh hiểu rõ hơn về xác suất của biến cố trong các tình huống thực tế. Các dạng bài bao gồm: Dạng 1. Xác suất của biến cố đồng khả năng xảy ra Nếu chỉ xảy ra A hoặc B (cả A B là hai biến cố đồng khả năng xảy ra), thì xác suất của chúng bằng nhau và bằng 0,5. Trong trường hợp có k biến cố đồng khả năng và chỉ xảy ra duy nhất một biến cố trong số đó, xác suất của mỗi biến cố đó đều bằng 1/k. Dạng 2. Áp dụng công thức tính xác suất Trong dạng này, chúng ta sẽ học cách tính xác suất bằng cách đếm số phần tử của tất cả các trường hợp có thể xảy ra, sau đó tính số kết quả thỏa mãn yêu cầu bài toán và áp dụng công thức tính xác suất. Dạng 3. Xác suất của biến cố chắc chắn, không thể Trình bày và phân tích khả năng xảy ra của từng biến cố bằng cách xác định xem biến cố đó có khả năng xảy ra (a = 1) hay không thể xảy ra (a = 0). Dạng 4. Xác suất của biến cố ngẫu nhiên Bước 1: Xác định số lần xảy ra của biến cố đang xét. Bước 2: Xác định số biến cố của thực nghiệm. Bước 3: Xác suất của biến cố là tỉ số giữa số lần xảy ra của biến cố và số biến cố của thực nghiệm. PHẦN III. BÀI TẬP TỰ LUYỆN Phần này chứa các bài tập tự luyện giúp học sinh rèn luyện kỹ năng tính toán và áp dụng lý thuyết xác suất vào các bài tập cụ thể.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề tam giác cân, đường trung trực của đoạn thẳng Toán 7
Tài liệu gồm 26 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề tam giác cân, đường trung trực của đoạn thẳng trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Chứng minh tam giác cân, tam giác đều và sử dụng tính chất của tam giác cân, tam giác đều để giải quyết bài toán. Dựa và dấu hiệu nhận biết của tam giác cân, tam giác đều. Dựa vào tính chất của tam giác cân, tam giác đều để tính số đo góc hoặc chứng minh các góc bằng nhau, các cạnh bằng nhau. Dạng 2 . Vận dụng tính chất của đường trung trực để giải quyết bài toán. Sử dụng tính chất: Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó. Dạng 3 . Chứng minh một điểm thuộc đường trung trực. Chứng minh một đường thẳng là đường trung trực của một đoạn thẳng. + Để chứng minh điểm M thuộc trung trực của đoạn thẳng AB, ta dùng nhận xét: Điểm cách đều hai mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó. + Để chứng minh đường thẳng d là đường trung trực của đoạn thẳng AB, ta chứng minh d chứa hai điểm phân biệt cách đều A và B hoặc dùng định nghĩa đường trung trực. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề các trường hợp bằng nhau của tam giác vuông Toán 7
Tài liệu gồm 26 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề các trường hợp bằng nhau của tam giác vuông trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tìm hoặc chứng minh hai tam giác vuông bằng nhau. + Xét hai tam giác vuông. + Kiểm tra các điều kiện bằng nhau cạnh – góc – cạnh, góc – cạnh – góc, cạnh huyền – góc nhọn, cạnh huyền – cạnh góc vuông. + Kết luận hai tam giác bằng nhau. Dạng 2. Sử dụng các trường hợp bằng nhau của tam giác vuông để chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau. Tính độ dài đoạn thẳng, số đo góc. + Chọn hai tam giác vuông có cạnh (góc) là đoạn thẳng (góc) cần tính hoặc chứng minh bằng nhau. + Tìm thêm hai điều kiện bằng nhau, trong đó có một điều kiện về cạnh, để kết luận hai tam giác bằng nhau. + Suy ra các cạnh (góc) tương ứng bằng nhau và kết luận. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề trường hợp bằng nhau thứ hai và thứ ba của tam giác Toán 7
Tài liệu gồm 36 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề trường hợp bằng nhau thứ hai và thứ ba của tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Tìm hoặc chứng minh hai tam giác bằng nhau. + Xét hai tam giác. + Kiểm tra ba điều kiện bằng nhau cạnh – góc – cạnh, góc – cạnh – góc. + Kết luận hai tam giác bằng nhau. Dạng 2. Sử dụng trường hợp bằng nhau của tam giác để chứng minh một tính chất khác. + Chọn hai tam giác có cạnh (góc) là hai đoạn thẳng (góc) cần chứng minh bằng nhau. + Chứng minh hai tam giác ấy bằng nhau theo một trong hai trường hợp cạnh – góc – cạnh, góc – cạnh – góc rồi suy ra hai cạnh (góc) tương ứng bằng nhau. Kiểm tra ba điều kiện bằng nhau cạnh – góc – cạnh, góc – cạnh – góc. + Kết hợp với các tính chất đã học về tia phân giác, đường thẳng song song, đường trung trực, tổng ba góc trong một tam giác, … để chứng minh một tính chất khác. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác Toán 7
Tài liệu gồm 22 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề hai tam giác bằng nhau, trường hợp bằng nhau thứ nhất của tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Bài tập lí thuyết: Viết kí hiệu về sự bằng nhau của hai tam giác, từ kí hiệu bằng nhau của hai tam giác suy ra các cạnh – góc bằng nhau. + Từ kí hiệu tam giác bằng nhau suy ra các cạnh và các góc bằng nhau đúng thứ tự tương ứng. + Ngược lại, khi viết kí hiệu tam giác bằng nhau lưu ý kiểm tra lại xem các góc hay cạnh tương ứng đã bằng nhau thỏa mãn yêu cầu đề bài chưa. Dạng 2 . Biết hai tam giác bằng nhau và một số điều kiện, tính số đo góc, độ dài cạnh của tam giác. + Từ kí hiệu tam giác bằng nhau suy ra các cạnh và các góc tương ứng bằng nhau. + Lưu ý các bài toán: tổng – hiệu, tổng – tỉ, hiệu – tỉ. + Sử dụng định lí tổng ba góc trong một tam giác. Dạng 3 . Chứng minh hai tam giác bằng nhau theo trường hợp bằng nhau thứ nhất. Từ đó chứng minh các bài toán liên quan: hai đoạn thẳng bằng nhau, hai góc bằng nhau, hai đường thẳng song song – vuông góc, đường phân giác, ba điểm thẳng hàng. + Chỉ ra các tam giác có ba cạnh bằng nhau để suy ra tam giác bằng nhau. + Từ tam giác bằng nhau suy ra các cặp cạnh tương ứng bằng nhau, cặp góc tương ứng bằng nhau. + Nắm vững các khái niệm: tia phân giác của góc, đường cao của tam giác, đường trung trực của đoạn thẳng, hai đường thẳng song song, hai đường thẳng vuông góc; nắm vững định lí tổng ba góc trong một tam giác, tiên đề Ơ clit để giải các bài toán chứng minh. PHẦN III . BÀI TẬP TỰ LUYỆN.