Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm - tích phân và ứng dụng - Bùi Trần Duy Tuấn

giới thiệu đến quý thầy, cô giáo và các em học sinh chuyên đề nguyên hàm – tích phân và ứng dụng do thầy Bùi Trần Duy Tuấn biên soạn, tài liệu gồm 321 trang tổng hợp kiến thức cơ bản cần nắm, phân dạng, hướng dẫn cách giải toán và tuyển chọn các ví dụ, bài tập có lời giải chi tiết. Chủ đề 1 . Nguyên hàm I. Tìm nguyên hàm bằng định nghĩa, tính chất và phương pháp phân tích 1. Tìm nguyên hàm các đa thức, lũy thừa, mũ, các hàm chứa căn 2. Tìm nguyên hàm của hàm hữu tỉ 3. Tìm nguyên hàm của hàm lượng giác II. Tìm nguyên hàm bằng phương pháp đổi biến số 1. Phương pháp đổi biến số dạng 1 2. Phương pháp đổi biến số dạng 2 III. Tìm nguyên hàm bằng phương pháp từng phần 1. Kỹ thuật chọn hệ số 2. Kỹ thuật tích phân từng phần bằng phương pháp đường chéo IV. Tìm nguyên hàm bằng tổng hợp các phương pháp Chủ đề 2 : Tích phân I. Phương pháp phân tích, dùng vi phân và sử dụng tính chất của tích phân II. Phương pháp đổi biến 1. Phương pháp đổi biến số dạng 1 2. Phương pháp đổi biến số dạng 2 3. Phương pháp đổi biến cho một số hàm đặc biệt III. Phương pháp từng phần [ads] Chủ đề 3 . Ứng dụng của tích phân I. Ứng dụng tích phân để tính diện tích hình phẳng 1. Một số bài toán về tính diện tích giới hạn bởi các đường cho trước 2. Một số bài toán về ứng dụng tích phân tính diện tích trong thực tế II. Tính thể tích vật thể và thể tích khối tròn xoay 1. Tính thể tích vật thể 2. Tính thể tích khối tròn xoay III. Ứng dụng của tích phân trong các lĩnh vực khác Xem thêm :  + Chuyên đề hàm số – Bùi Trần Duy Tuấn + Chuyên đề lũy thừa, mũ và logarit – Bùi Trần Duy Tuấn + Chuyên đề số phức – Bùi Trần Duy Tuấn + Chuyên đề phương pháp tọa độ trong không gian – Bùi Trần Duy Tuấn Ngoài ra, bạn đọc có thể xem thêm các chuyên đề khác do thầy Bùi Trần Duy Tuấn biên soạn tại địa chỉ: toanhocplus.blogspot.com.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm nguyên hàm của hàm hữu tỉ
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm của hàm hữu tỉ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT I. Các công thức cần nhớ. II. Nguyên hàm dạng P x dx I Q x. + Dạng 1: P x dx I ax b. + Dạng 2: 2 mx n I dx ax bx c. + Dạng 3: P x dx I Q x với 3 2 Q x ax bx cx d. + Dạng 4: Tham khảo và nâng cao: 4 2 P x dx I x a trong đó bậc của P(x) nhỏ hơn 4. + Dạng 5: Tham khảo và nâng cao: Một số nguyên hàm hữu tỷ khi Q(x) là đa thức bậc 6. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm nguyên hàm từng phần
Tài liệu gồm 23 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề nguyên hàm từng phần, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT TRỌNG TÂM Một số dạng nguyên hàm từng phần thường gặp: + Dạng 1: I P x mx n dx ln trong đó P x là đa thức. Theo quy tắc ta đặt ln u mx n dv P x dx. + Dạng 2: sin cos x I P x dx x trong đó P x là đa thức. Theo quy tắc ta đặt sin cos u Px x dv dx x. + Dạng 3: ax b I P x e dx trong đó P x là đa thức. Theo quy tắc ta đặt ax b u Px dv a dx. + Dạng 4: sin cos x x I e dx x. Theo quy tắc ta đặt sin cos x x u x dv e dx. B. VÍ DỤ MINH HỌA BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm phương pháp đổi biến tìm nguyên hàm
Tài liệu gồm 22 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương pháp đổi biến tìm nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. DẠNG 1. ĐỔI BIẾN SỐ HÀM SỐ VÔ TỈ (Đặt t = hàm theo biến x). + Mẫu 1: Đổi biến hàm số vô tỷ đơn giản. + Mẫu 2: Nguyên hàm dạng x f a dx. + Mẫu 3: Nguyên hàm dạng ln f x dx x. DẠNG 2. ĐỔI BIẾN SỐ HÀM VÔ TỈ (Đặt x = hàm theo biến t). + Mẫu 1: Nếu f x có chứa 2 2 a x ta đặt sin 2 2 x a tt. + Mẫu 2: Dạng 2 2 x a thì đổi biến số tan 2 2 xa t t π π. + Mẫu 3: Dạng 2 2 x a thì ta đặt sin a x t (hoặc cos a x t). + Mẫu 4: Dạng 2 2 dx x a thì ta đặt xa t tan. + Mẫu 5: Nếu f x có chứa a x a x thì đặt 2 2 cos 2 2 sin 2 cos 2 1 cos 2 cos 1 cos 2 sin dx d a t a tdt xa t ax t t ax t t. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm phương pháp vi phân tìm nguyên hàm
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề phương pháp vi phân tìm nguyên hàm, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. Vi phân của hàm số. II. Một số công thức vi phân quan trọng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.