Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh

Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Yên Phong Bắc Ninh Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022-2023 Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022-2023 Chào đón đến với Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022-2023 do Phòng Giáo dục và Đào tạo Yên Phong, Bắc Ninh tổ chức. Đề thi này sẽ diễn ra vào ngày 14 tháng 01 năm 2023, dành cho các học sinh lớp 9. Trích dẫn Đề học sinh giỏi huyện Toán lớp 9 năm 2022-2023: Tìm tất cả các số nguyên dương a, b sao cho a + b^2 chia hết cho a^2b - 1. Cho các đường thẳng: (d1): 2x + y = 6; (d2): 3x + y = 10; (d3): (2m + 1)x + 2y = m + 7. Tìm các giá trị của m để các đường thẳng trên đồng quy tại một điểm. Cho đường tròn (O; R) và một điểm A nằm bên ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của (O; R). Từ B vẽ đường kính BD của (O; R), đường thẳng AD cắt (O; R) tại các điểm E (khác điểm D), gọi H là giao điểm của OA và BC. Chứng minh AE.AD = AH.AO. Qua O vẽ đường thẳng vuông góc với AD tại K cắt BC tại F. Chứng minh rằng FD là tiếp tuyến của (O; R). Đường thẳng đi qua trung điểm I của đoạn thẳng AB vuông góc với cạnh OA tại M cắt đường thẳng DF tại N. Tam giác AND là tam giác gì? Vì sao? Trên bảng có các số tự nhiên từ 1 đến 2022, người ta làm như sau: Lấy ra hai số bất kì và thay bằng hiệu của chúng, cứ làm như vậy đến khi còn một số trên bảng thì dừng lại. Có thể làm để trên bảng chỉ còn lại số 2 được không? Giải thích? Hy vọng rằng các em học sinh sẽ học tập và ôn tập chăm chỉ để đạt kết quả cao trong kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán THCS năm 2021 - 2022 phòng GDĐT huyện Thuận Châu - Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán THCS năm 2021 – 2022 phòng GD&ĐT huyện Thuận Châu – Sơn La.
Đề thi chọn HSG huyện Toán 9 năm 2021 - 2022 phòng GDĐT Sơn Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Sơn Hòa, tỉnh Phú Yên; kỳ thi được diễn ra vào thứ Ba ngày 04 tháng 01 năm 2022. Trích dẫn đề thi chọn HSG huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Sơn Hòa – Phú Yên : + Chứng minh rằng với mọi số tự nhiên n thì n2 + 12n + 2022 không thể là số chính phương. + Cho tam giác ABC vuông tại A, đường cao AH. a) Tính AH, BH biết BC = 50 cm và AB/AC = 3/4. b) Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng: AH3 = BC.BD.CE. c) Giả sử BC = 2a là độ dài cố định. Hỏi tam giác vuông ABC có thêm điều kiện gì để BD2 + CE2 đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất của BD2 + CE2. + Cho hai số dương a và b thỏa mãn. Tìm giá trị nhỏ nhất của biểu thức Q = 1/a + 1/b.
Đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 26 tháng 12 năm 2021.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình : + Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021 đôi một nguyên tố cùng nhau. Chứng minh trong 16 số trên có ít nhất một số là số nguyên tố. + Cho 8045 điểm trên một mặt phẳng sao cho cứ 3 điểm bất kì thì tạo thành một tam giác có diện tích nhỏ hơn 1. Chứng minh rằng luôn có thể có ít nhất 2012 điểm nằm trong tam giác hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1.