Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh vào THPT chuyên 2018 2019 sở GD và ĐT Hưng Yên

Nội dung Đề tuyển sinh vào THPT chuyên 2018 2019 sở GD và ĐT Hưng Yên Bản PDF - Nội dung bài viết Đề tuyển sinh vào THPT chuyên 2018 - 2019 tại Hưng Yên Đề tuyển sinh vào THPT chuyên 2018 - 2019 tại Hưng Yên Đề tuyển sinh vào lớp 10 THPT chuyên 2018 - 2019 sở GD và ĐT Hưng Yên là bước quan trọng để lựa chọn những học sinh có kiến thức và khả năng học tập tốt vào các trường THPT chuyên trong tỉnh. Đề thi này bao gồm 6 bài toán tự luận, thời gian làm bài là 120 phút, và đề thi đi kèm với lời giải chi tiết dành cho các thí sinh. Trích đề tuyển sinh vào lớp 10 THPT chuyên 2018 - 2019 sở Hưng Yên: Quãng đường AB dài 120 km. Một ô tô di chuyển từ A đến B với một vận tốc cố định. Khi quay về từ B đến A, ô tô di chuyển với vận tốc thấp hơn vận tốc đi từ A đến B là 10 km/h. Hỏi vận tốc của ô tô khi quay về, biết rằng thời gian đi nhiều hơn thời gian về là 24 phút. Tìm giá trị của m để đường thẳng y = x + m^2 + 2 và đường thẳng y = (m - 2)x + 11 cắt nhau tại một điểm trên trục tung. Tìm giá trị của m để phương trình x^4 + 5x^2 + 6 - m = 0 (với m là tham số) có đúng hai nghiệm. Đề tuyển sinh này cần sự tỉ mỉ, logic và kiến thức toán học của các thí sinh để giải quyết các bài toán phức tạp, từ đó đánh giá được năng lực và kỹ năng học tập của họ.

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán (chuyên) năm 2023 - 2024 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dùng cho thí sinh thi vào lớp chuyên Toán) năm học 2023 – 2024 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023. Trích dẫn Đề thi vào 10 môn Toán (chuyên) năm 2023 – 2024 trường chuyên Lam Sơn – Thanh Hóa : + Xác định số nguyên dương n lớn nhất sao cho với mọi số nguyên tố p > 7 thì p6 − 1 chia hết cho n. + Cho tam giác nhọn ABC (AB < AC) có các đường cao AD, BE, CF đồng quy tại điểm H. Gọi K là trung điểm của đoạn thẳng AH. 1. Chứng minh tứ giác DEKF nội tiếp đường tròn, gọi đường tròn đó là (S). 2. Gọi P, Q lần lượt là trung điểm của các đoạn thẳng EF, BC. Chứng minh AD là tiếp tuyến của đường tròn ngoại tiếp tam giác HPQ. 3. Gọi M, N lần lượt là giao điểm của (S) với các đoạn thẳng BH, CH. Tiếp tuyến tại D của đường tròn (S) cắt MN tại T. Gọi X, Y là các giao điểm của đường tròn (S) với đường tròn ngoại tiếp tam giác BHC. Chứng minh các điểm T, X, Y thẳng hàng. + Cho tập hợp X = {1; 2; …; 120} gồm 120 số nguyên dương đầu tiên, trong đó có 60 số được viết bằng màu đỏ và 60 số còn lại được viết bằng màu xanh. Chứng minh rằng tồn tại 40 số nguyên dương liên tiếp của tập X, trong đó có 20 số được viết bằng màu đỏ và 20 số được viết bằng màu xanh.
Đề thi vào 10 chuyên môn Toán (chung - XH) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên xã hội) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.
Đề thi vào 10 chuyên môn Toán (chung - TN) năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (đề chung – dành cho học sinh thi vào các lớp chuyên tự nhiên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định.
Đề thi vào lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (môn chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023. Trích dẫn Đề thi vào lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Lai Châu : + Chủ Nhật hàng tuần, Nam thường tập thể dục bằng cách đạp xe đạp trên một quãng đường từ nhà lên Thành phố và ngược lại. Vận tốc đạp xe đạp của Nam lúc đi nhanh hơn lúc về 3km/h. Biết quãng đường từ nhà Nam đến Thành phố là 30km và tổng thời gian cả đi lẫn về là 4 giờ 30 phút. Tính vận tốc đạp xe đạp lúc đi của Nam. + Cho tam giác ABC vuông tại A, biết cạnh BC = 10cm, góc B = 60 độ (hình vẽ bên). Tính cạnh AC, với sin 60°. + Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD với đường tròn (C nằm giữa M và D, O và A nằm về hai phía đối với CD). Gọi H là giao điểm của MO và AB. a) Chứng minh tứ giác MAOB nội tiếp. b) Chứng minh MC.MD = MH.MO. c)Kẻ đường kính AI của (O), các dây IC, ID cắt MO tại P và Q. Chứng minh OP = OQ.