Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề rút gọn biểu thức chứa căn thức bậc hai

Tài liệu gồm 44 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề rút gọn biểu thức chứa căn thức bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 1 bài số 8. A. KIẾN THỨC TRỌNG TÂM Để rút gọn biểu thức chứa căn bậc hai ta thường thực hiện các bước sau: + Bước 1: Tìm điều kiện xác định của biểu thức (nếu đề chưa cho điều kiện). Chú ý điều kiện căn thức, điều kiện mẫu và điều kiện phần chia. + Bước 2: Phân tích mẫu thành nhân tử, kết hợp phân tích tử bằng các phép biến đổi đơn giản. + Bước 3: Bỏ ngoặc, thu gọn các biểu thức một cách hợp lý. Kết hợp điều kiện bài toán để kết luận. B. CÁC DẠNG BÀI MINH HỌA I. CÁC DẠNG TOÁN Bài toán rút gọn tổng hợp thường có các bài toán phụ: tính giá trị biểu thức khi cho giá trị của ẩn; tìm điều kiện của biến để biểu thức lớn hơn (nhỏ hơn) một số nào đó; tìm giá trị của biến để biểu thức có giá trị nguyên; tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức … Do vậy, ta phải áp dụng các phương pháp tương ứng, thích hợp cho từng dạng toán. Dạng toán 1 . Rút gọn biểu thức. Dạng toán 2 . Rút gọn biểu thức – tính giá trị của biểu thức khi cho giá trị của ẩn. Các bước thực hiện: + Rút gọn, chú ý điều kiện của biểu thức. + Rút gọn giá trị của biến nếu cần. + Thay vào biểu thức rút gọn. Dạng toán 3 . Rút gọn biểu thức – tìm x để biểu thức rút gọn đạt giá trị nguyên. + Rút gọn biểu thức. + Lấy tử chia cho mẫu tách biểu thức thành tổng của một số nguyên và một biểu thức có tử là một số nguyên. + Trong biểu thức mới tạo thành, ta cho mẫu là các ước nguyên của tử để suy ra x. Dạng toán 4 . Rút gọn biểu thức – tìm x để biểu thức thỏa bằng hoặc lớn hơn (nhỏ hơn) một số cho trước. + Rút gọn. + Cho biểu thức rút gọn thỏa điều kiện ta được phương trình hoặc bất phương trình, chú ý điều kiện của ẩn trong bài toán. Dạng toán 5 . Rút gọn biểu thức – tìm x để biểu thức đạt giá trị lớn nhất (GTLN), giá trị nhỏ nhất (GTNN). + Rút gọn. + Biến đổi biểu thức về dạng: Số không âm + hằng số rồi suy ra GTNN; Hằng số – số không âm rồi suy ra GTLN; Sử dụng bất đẳng thức Cô-si. Dạng toán 6 . Nâng cao phát triển tư duy. II. TRẮC NGHIỆM RÈN PHẢN XẠ

Nguồn: toanmath.com

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề bài toán về đường thẳng và parabol
Nội dung Tài liệu lớp 9 môn Toán chủ đề bài toán về đường thẳng và parabol Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề đường thẳng và parabol Tài liệu học Toán lớp 9 chủ đề đường thẳng và parabol Tài liệu này bao gồm 08 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến đường thẳng và parabol trong chương trình Toán lớp 9. Mọi bài tập đều có đáp án và lời giải chi tiết. Bài toán về đường thẳng và parabol thường đưa ra phương trình của đường thẳng d (dạng y = mx + n) và parabol P (dạng y = ax^2 + bx + c) và yêu cầu tìm số giao điểm giữa chúng. Để giải bài toán này, ta có thể sử dụng phương pháp so sánh biệt thức ∆ của phương trình hoành độ giao điểm của d và P. Qua bảng thống kê số giao điểm và biệt thức ∆, ta có thể dễ dàng xác định vị trí tương đối của đường thẳng và parabol: không cắt, tiếp xúc hoặc cắt tại hai điểm phân biệt. Tài liệu cung cấp một loạt bài tập giúp học sinh ôn tập và nắm vững kiến thức về đường thẳng và parabol. File WORD dành cho giáo viên giúp dễ dàng sử dụng và chỉnh sửa theo nhu cầu.
Tài liệu lớp 9 môn Toán chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn
Nội dung Tài liệu lớp 9 môn Toán chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn Tài liệu lớp 9 môn Toán chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn Thông qua tài liệu này, học sinh sẽ được học về kiến thức cơ bản về góc có đỉnh bên trong đường tròn và góc có đỉnh bên ngoài đường tròn trong môn Toán lớp 9. A. Lý thuyết: 1. Góc có đỉnh bên trong đường tròn: Góc BIC nằm bên trong đường tròn (O) được gọi là góc có đỉnh bên trong đường tròn. Định lí 1: Số đo của góc có đỉnh bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn. 2. Góc có đỉnh bên ngoài đường tròn: Các góc có đỉnh nằm bên ngoài đường tròn, các cạnh đều có điểm chung với đường được gọi là góc có đỉnh ở bên ngoài đường tròn. Định lí 2: Số đo của góc có đỉnh ở bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn. B. Bài tập: Dạng 1: Chứng minh hai góc bằng nhau, hai đoạn thẳng bằng nhau. Cách giải: Sử dụng hai định lí về số đo của góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn. Dạng 2: Chứng minh hai đường thẳng song song hoặc vuông góc. Chứng minh đẳng thức cho trước. Cách giải: Áp dụng hai định lí về số đo góc có đỉnh bên trong đường tròn, góc có đỉnh bên ngoài đường tròn để có được các góc bằng nhau, cạnh bằng nhau. Tài liệu này cung cấp đầy đủ đáp án và lời giải chi tiết cho các bài tập, giúp học sinh hiểu rõ hơn về chủ đề góc có đỉnh bên trong đường tròn, bên ngoài đường tròn.
Tài liệu lớp 9 môn Toán chủ đề góc nội tiếp
Nội dung Tài liệu lớp 9 môn Toán chủ đề góc nội tiếp Bản PDF - Nội dung bài viết Tài liệu Tạo Góc Nội Tiếp Lớp 9 Môn ToánLý Thuyết Về Góc Nội TiếpBài Tập Thực Hành Tài liệu Tạo Góc Nội Tiếp Lớp 9 Môn Toán Chào mừng các bạn học sinh lớp 9 đến với tài liệu chuyên đề về góc nội tiếp trong môn Toán. Tài liệu này bao gồm 09 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập về chủ đề góc nội tiếp trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết để giúp các bạn tự học và ôn tập hiệu quả. Lý Thuyết Về Góc Nội Tiếp 1. Định nghĩa: Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn. Cung nằm bên trong góc nội tiếp được gọi là cung bị chắn. 2. Định lý: Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn. 3. Hệ quả: a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau và ngược lại. b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau. c) Góc nội tiếp (nhỏ hơn hoặc bằng 90 độ) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung. d) Góc nội tiếp chắn nửa đường tròn là góc vuông. Bài Tập Thực Hành Để làm quen với kiến thức về góc nội tiếp, chúng ta sẽ thực hành qua các dạng bài tập sau: Dạng 1: Chứng minh các góc bằng nhau, các đoạn thẳng bằng nhau bằng cách áp dụng hệ quả trong phần lý thuyết. Dạng 2: Chứng minh hai đường thẳng vuông góc, ba điểm thẳng hàng bằng cách sử dụng kiến thức về góc nội tiếp. Nhằm giúp các bạn hiểu rõ hơn về chủ đề này, tài liệu này đã được biên soạn cẩn thận và chi tiết. Chúc các bạn học tốt và thành công trên con đường học tập!
Tài liệu lớp 9 môn Toán chủ đề góc ở tâm và số đo cung
Nội dung Tài liệu lớp 9 môn Toán chủ đề góc ở tâm và số đo cung Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề góc ở tâm và số đo cung Tài liệu lớp 9 môn Toán chủ đề góc ở tâm và số đo cung Tài liệu này bao gồm 09 trang với kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề góc ở tâm và số đo cung trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết. Trong phần lý thuyết, bạn sẽ được học về góc ở tâm, số đo cung và cách so sánh hai cung. Bạn sẽ tìm hiểu khi nào thì tổng số đo của hai cung bằng số đo của cung lớn. Trong phần bài tập, có hai dạng toán chính. Dạng 1 là tính số đo của góc ở tâm và cung bị chắn. Bạn sẽ được hướng dẫn cách tính các số đo này và sử dụng tỉ số lượng giác để giải bài toán. Dạng 2 là chứng minh hai cung bằng nhau, thông qua việc chứng minh cùng một số đo. Tài liệu cung cấp file WORD để quý thầy cô tham khảo và sử dụng trong việc giảng dạy. Đảm bảo rằng bạn sẽ hiểu rõ và áp dụng được kiến thức trong phần góc ở tâm và số đo cung sau khi sử dụng tài liệu này.