Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tích phân - Phạm Thanh Phương

Tài liệu gồm 54 trang với nội dung bao gồm lý thuyết, phân dạng, phương pháp giải và bài tập trắc nghiệm chuyên đề tích phân. Nội dung tài liệu gồm các phần: I. ĐỊNH NGHĨA, TÍNH CHẤT CỦA TÍCH PHÂN II. PHƯƠNG PHÁP TÍNH TÍCH PHÂN 1. PHƯƠNG PHÁP PHÂN TÍCH, ĐƯA VỀ TÍCH PHÂN ĐƠN GIẢN – Phương pháp này tính được các tính phân hàm đa thức, hàm có chứa dấu trị tuyệt đối, 1 số hàm lượng giác đơn giản. – Để tính tích phân theo phương pháp này, cần phải nắm định nghĩa tích phân, các tính chất tích phân và thuộc bảng nguyên hàm để có thể biến đổi hàm dưới dấu tích phân về các hàm thường gặp. Từ đó, học sinh có thể linh hoạt đưa bài toán mới về những bài toán cơ bản. 2. PHƯƠNG PHÁP DÙNG VI PHÂN ĐỂ TÍNH TÍCH PHÂN – Một số bài toán đơn giản không cần phải đưa ra biến mới, tức là không cần đặt, biến lấy tích phân vẫn là biến, cận lấy tích phân không đổi. Nói cách khác, ta có thể trình bày gọn bằng công thức vi phân dt(x)=t’(x)dx. Cách làm này ngắn gọn, hiệu quả trong rất nhiều bài toán tích phân. [ads] 3. PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN – Việc lựa chọn và phải thỏa mãn các điều kiện sau: đơn giản, dễ tìm, tích phân mới đơn giản hơn tích phân ban đầu. Chọn hàm để đặt bằng theo thứ tự ưu tiên giảm dần như sau: hàm lôgarit, hàm lũy thừa, hàm số mũ, hàm lượng giác. 4. PHƯƠNG PHÁP ĐỔI BIẾN SỐ DẠNG 1 – Đặt t=t(x) với là x là biến ban đầu, t là biến mới. Khi đổi biến phải đổi cận. 5. PHƯƠNG PHÁP ĐỔI BIẾN SỐ DẠNG 2 – Đặt x=x(t), với x là biến ban đầu, t là biến mới. Khi đổi biến phải đổi cận. – Cách này áp dụng cho 1 số bài toán đặc thù mà không thể hoặc gặp khó khăn khi áp dụng phương pháp phân tích, phương pháp đổi biến dạng 1 hoặc tích phân từng phần. 6. MỘT SỐ LƯU Ý VỀ PHƯƠNG PHÁP ĐỔI BIẾN SỐ III. MỘT SỐ BÀI TOÁN TỔNG HỢP 1. MỘT SỐ BÀI TOÁN TÍCH PHÂN HÀM HỮU TỈ 2. MỘT SỐ BÀI TOÁN TÍCH PHÂN HÀM LƯỢNG GIÁC 3. MỘT SỐ BÀI TOÁN TÍCH PHÂN HÀM VÔ TỈ IV. BÀI TẬP TỰ LUẬN V. CÂU HỎI TRẮC NGHIỆM Đáng chú ý khi tài liệu còn đưa các bài toán thực tế được giải dựa vào phép tính tích phân, ví dụ như: “Một túi nước có trọng lượng 10(N) được nâng từ mặt đất lên không trung với tốc độ cố định. Nước trong túi bị rỉ ra ngoài với tốc độ rỉ nước không đổi. Khi nâng đến độ cao 20 mét thì trong túi không còn nước. Bỏ qua trọng lượng túi, tính công sinh ra khi nâng túi nước nói trên từ độ cao 5 mét đến độ cao 10 mét”.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề các dạng tích phân hàm ẩn điển hình mức độ VD - VDC
Tài liệu gồm 84 trang, được biên soạn bởi thầy giáo Đặng Việt Đông (giáo viên Toán trường THPT Nho Quan A, tỉnh Ninh Bình), hướng dẫn phương pháp giải các dạng bài tập tích phân hàm ẩn điển hình mức độ vận dụng và vận dụng cao (VD – VDC), giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng. Dạng 1 . Áp dụng các quy tắc và đạo hàm của hàm số hợp trang. + Quy tắc đạo hàm tích 3. + Quy tắc đạo hàm thương 7. + Áp dụng công thức đạo hàm của hàm chứa căn 15. + Áp dụng công thức đạo hàm của hàm mũ 18. + Áp dụng công thức đạo hàm của hàm lôgarit 19. + Áp dụng các công thức đạo hàm khác 21. Dạng 2 . Phương pháp đổi biến 22. + Tích phân hàm ẩn đổi biến dạng 1 22. + Tích phân hàm ẩn đổi biến dạng 2 28. + Tích phân hàm ẩn đổi biến dạng 3 39. + Tích phân hàm ẩn đổi biến dạng 4 49. + Tích phân hàm ẩn đổi biến dạng 5 51. + Tích phân hàm ẩn đổi biến dạng 6 53. Dạng 3 . Phương pháp từng phần 55. + Trường hợp riêng 68. Dạng 4 . Phương trình vi phân tuyến tính cấp 1 78.
Chủ đề nguyên hàm, tích phân và ứng dụng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 398 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề nguyên hàm, tích phân và ứng dụng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Các phương pháp tính nguyên hàm cơ bản. DẠNG 2 Các phương pháp tính tích phân cơ bản. DẠNG 3 Tích phân cho bởi nhiều hàm. DẠNG 4 Kết hợp đổi biến, từng phần tính tích phân. DẠNG 5 Tích phân hàm ẩn phần 1. DẠNG 6 Tích phân hàm ẩn phần 2. DẠNG 7 Tích phân đặc biệt kết hợp với tích phân hàm ẩn. DẠNG 8 Tính tích phân bằng phương pháp vi phân. DẠNG 9 Tính tích phân dựa vào đồ thị. DẠNG 10.1 Ứng dụng tích phân tích diện tích hình phẳng. DẠNG 10.2 Ứng dụng tích phân tính diện tích hình phẳng. DẠNG 11 Toán thực tế liên quan đến diện tích hình phẳng. DẠNG 12 Ứng dụng tích phân vào bài toán chuyển động. DẠNG 13 Tích phân trong đề thi của Bộ Giáo dục và Đào tạo.
Một số bài toán chọn lọc về tích phân
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề một số bài toán chọn lọc về tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3.
Một số ứng dụng khác của tích phân
Tài liệu gồm 25 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề một số ứng dụng khác của tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. Dạng 1: Bài toán liên quan đến quãng đường, vận tốc, gia tốc và thời gian. Dạng 2: So sánh các giá trị của hàm số. BÀI TẬP TỰ LUYỆN. LỜI GIẢI CHI TIẾT.