Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chinh phục nguyên hàm - tích phân từ A đến Z - Nguyễn Hữu Bắc

Sách gồm 480 trang trình bày chi tiết hầu hết những dạng toán nguyên hàm – tích phân thường gặp trong chương trình Toán 12. Nội dung sách : Chương mở đầu + Mối liên hệ giữa nguyên hàm và tích phân + Ý nghĩa A. Lý thuyết Chương I. Nguyên hàm I. Khái niệm nguyên hàm II. Tính chất nguyên hàm Chương II. Tích phân I. Khái niệm về tích phân II. Tính chất của tích phân III. Các phương pháp tính nguyên hàm – tích phân thường gặp Chương III. Bảng nguyên hàm các hàm số cơ bản Chương IV. Cách tạo dạng tích phân B. Phương pháp tìm nguyên hàm – tích phân Chương I. Phương pháp vi phân Chương II. Phương pháp bảng nguyên hàm Chương III. Phương pháp đổi biến số I. Phương pháp II. Đổi biến số hàm vô tỷ III. Đổi biến hàm đa thức bậc cao IV. Đổi biến hàm lượng giác V. Hàm dưới dấu tích phân chứa các biểu thức bậc nhất của sinx, cosx VI. Đổi biến dựa vào cận Chương IV. Phương pháp tích phân từng phần I. Kỹ thuật chọn hệ số C II. Kỹ thuật tính nhanh III. Phân dạng – phương pháp [ads] C. Nguyên hàm – Tích phân các loại hàm số Chương I. Nguyên hàm – tích phân các hàm đa thức I. Hàm số tìm nguyên hàm II. Phương pháp III. Bài tập vận dụng Chương II. Tích phân hàm hữu tỉ I. Hàm số tìm nguyên hàm II. Phương pháp III. Kỹ thuật nhẩm hệ số trong đồng nhất thức IV. Nguyên tắc giải V. Bài tập áp dụng Chương III. Tích phân hàm vô tỉ Chương IV. Tích phân hàm lượng giác I. Hàm số tìm nguyên hàm II. Phương pháp III. Các công thức lượng giác thường sử dụng IV. Các dạng nguyên hàm lượng giác thường gặp Chương V. Tích phân hàm số mũ – logarit Chương VI. Tích phân hàm trị tuyệt đối Chương VII. Tích phân liên kết Chương VIII. Tích phân trong đề thi đại học từ 2002 đến 2015 Chương IX. Tích phân trong các đề thi thử đại học Chương X. Những bài toán tích phân khó D. Ứng dụng tích phân Chương I. Ứng dụng tích phân để tính diện tích I. Diện tích hình phẳng giới hạn bởi các đường cong II. Diện tích hình tròn III. Diện tích hình Elip Chương II. Ứng dụng tích phân để tính thể tích I. Thể tích V sinh bởi diện tích S (tạo bởi một đường cong với trục) II. Thể tích V sinh bởi diện tích S (tạo bởi từ hai đường cong) Chương III. Sai lầm khi tính tích phân

Nguồn: toanmath.com

Đọc Sách

Một số thủ thuật tính tích phân
Tài liệu gồm 34 trang, được biên soạn bởi quý thầy, cô giáo kênh PPT – TV, hướng dẫn một số thủ thuật giải bài toán tích phân vận dụng – vận dụng cao (VD – VDC), giúp học sinh tìm hiểu chuyên sâu chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi tốt nghiệp THPT môn Toán; các bài toán được chọn lọc trong các đề thi thử THPT môn Toán. I. Các phương pháp thường sử dụng. + Phương pháp tự luận. + Phương pháp Casio. + Phương pháp chọn hàm đại diện. II. Bài tập. III. Đáp án & lời giải chi tiết.
Tổng ôn tập TN THPT 2020 môn Toán Ứng dụng của tích phân
Tài liệu gồm 45 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề ứng dụng của tích phân; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Ứng dụng của tích phân: Vấn đề 1. Ứng dụng tích phân tính diện tích hình phẳng. Vấn đề 2. Ứng dụng tích phân tính thể tích. Vấn đề 3. Ứng dụng tích phân vào bài toán chuyển động.
Tổng ôn tập TN THPT 2020 môn Toán Tích phân
Tài liệu gồm 59 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề tích phân; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Tích phân: Vấn đề 1. Định nghĩa – tính chất của tích phân. Vấn đề 2. Tích phân cơ bản (thông qua bảng công thức nguyên hàm). Vấn đề 3. Tích phân hàm số hữu tỷ. Vấn đề 4. Phương pháp đổi biến số. Vấn đề 5. Phương pháp từng phần. Vấn đề 6. Tích phân hàm ẩn.
Tổng ôn tập TN THPT 2020 môn Toán Nguyên hàm
Tài liệu gồm 38 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Nguyên hàm: Vấn đề 1. Nguyên hàm cơ bản. Vấn đề 2. Nguyên hàm của hàm số hữu tỉ. Vấn đề 3. Tính nguyên hàm bằng phương pháp từng phần. Vấn đề 4. Nguyên hàm có điều kiện. Vấn đề 5. Nguyên hàm hàm ẩn.