Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG Toán 9 vòng 1 năm 2019 - 2020 phòng GDĐT Thường Tín - Hà Nội

Ngày … tháng 10 năm 2019, phòng Giáo dục và Đào tạo UBND huyện Thường Tín, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi lớp 9 vòng 1 môn Toán năm học 2019 – 2020. Đề thi chọn HSG Toán 9 vòng 1 năm học 2019 – 2020 phòng GD&ĐT Thường Tín – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi chọn HSG Toán 9 vòng 1 năm 2019 – 2020 phòng GD&ĐT Thường Tín – Hà Nội : + Cho hai đường tròn (O;R) và đường tròn (O’;R/2) tiếp xúc ngoài nhau tại A. Trên đường tròn (O) lấy điểm B sao cho AB = R và điểm M trên cung lớn AB. Tia MA cắt đường tròn (O’) tại điểm thứ hai là N. Qua N kẻ đường thẳng song song với AB cắt đường thẳng MB ở Q và cắt đường tròn (O’) ở P. a. Chứng minh: Tam giác OAM đồng dạng với tam giác OAN. b. Tính: NQ theo R. c. Xác định vị trí của M để diện tích tứ giác ABQN đạt giá trị lớn nhất. Tính giá trị lớn nhất theo R. + Cho tam giác ABC và một điểm O nằm trong tam giác đó. Các tia AO, BO, CO cắt các cạnh BC, CA, AB theo thứ tự tại M, N, P. Chứng minh rằng: OA/AM + OB/BN + OC/CP = 2. + Cho hai số dương x, y thỏa mãn điều kiện x^3 + y^3 = x – y. Chứng minh rằng: x + y < 1.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Triệu Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi lớp 9 cấp huyện môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Sáu ngày 31 tháng 12 năm 2021.
Đề chọn HSG Toán 9 đợt 1 năm 2021 - 2022 phòng GDĐT Ứng Hòa - Hà Nội
Đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn HSG Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Ứng Hòa – Hà Nội : + Cho các hàm số bậc nhất. Với giá trị nào của m thì đường thẳng d1 cắt hai đường thẳng d2 và d3 lần lượt tại hai điểm A và B sao cho A có hoành độ âm còn B có hoành độ dương. + Cho ABC có ba góc nhọn cân tại A. Các đường cao AD, BE cắt nhau tại H. 1. Chứng minh: ABC đồng dạng DEC. 2. Chứng minh: cosABC. + Trong hình vuông cạnh bằng 1 cho 33 điểm bất kỳ. Chứng minh rằng trong các điểm đã cho có thể tìm được 3 điểm lập thành tam giác có diện tích không lớn hơn 1/32.
Đề học sinh giỏi huyện Toán 9 năm 2021 - 2022 phòng GDĐT Nam Đàn - Nghệ An
Đề học sinh giỏi huyện Toán 9 năm 2021 – 2022 phòng GD&ĐT Nam Đàn – Nghệ An được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút.
Đề chọn học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Anh Sơn - Nghệ An
Đề chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Anh Sơn – Nghệ An gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT Anh Sơn – Nghệ An : + Cho ba số thực dương a, b, c thỏa mãn: ab + bc + ca = 1. Chứng minh rằng. + Cho tam giác ABC có AB < AC; BAC = 45°; vẽ các đường cao BM và CN. a) Chứng minh: AM.AC = AN.AB. b) Chứng minh BC2 = 2.MN2. c) Từ A kẻ đường thẳng song song với BM cắt đường thẳng BC tại Q. Chứng minh. + Bên trong hình vuông có cạnh bằng 1cm lấy 51 điểm phân biệt không có ba điểm nào thẳng hàng, chứng minh tồn tại ít nhất 3 điểm trong 51 điểm đó tạo thành một tam giác có diện tích bé hơn 0,04 cm2.