Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL học sinh giỏi Toán 8 năm 2023 - 2024 phòng GDĐT Vinh - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề khảo sát chất lượng học sinh giỏi môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề KSCL học sinh giỏi Toán 8 năm 2023 – 2024 phòng GD&ĐT Vinh – Nghệ An : + Một người mua một căn hộ chung cư dành cho người có thu nhập thấp với giá 500 triệu đồng. Người đó trả trước số tiền là 100 triệu đồng, số tiền còn lại người đó thanh toán theo hình thức trả góp với lãi suất tính trên tổng số tiền còn nợ là 0,5% mỗi tháng. Kể từ ngày mua, sau mỗi tháng người đó trả số tiền cố định là 4 triệu đồng. a) Tính số tiền người đó còn nợ sau 3 tháng. b) Với việc trả góp như trên, hỏi sau 1 năm người đó còn nợ bao nhiêu (làm tròn đến hàng nghìn)? + Trong một hộp kín có 6 viên bi đỏ, 4 viên bi xanh, 8 viên bi vàng (có kích thước và hình dạng như nhau chỉ khác màu sắc). Lấy ngẫu nhiên 1 viên bi từ trong hộp. a) Tính xác suất lấy được viên bi mỗi màu. b) Thêm vào hộp một số viên bi màu đỏ, màu xanh và màu vàng sao cho xác suất chọn được một viên bi mỗi màu không đổi. Cần thêm ít nhất bao nhiêu viên bi mỗi màu? + Một con Robot di chuyển trên một mặt phẳng tọa độ, chỉ đi qua các điểm nguyên (điểm có hoành độ và tung độ đều là số nguyên) theo nguyên tắc sau: Từ điểm (x;y) con Robot chỉ có thể di chuyển đến bất kì điểm nào đó trong số các điểm (y;x); (3x;-2y); (-2x;3y); (x + 1; y + 4); (x – 1; y – 4). Ban đầu con Robot đang ở điểm A(2023;2024) hỏi con robot có thể di chuyển đến gốc tọa độ O(0;0) được hay không?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 8 tháng 9 năm 2019 - 2020 trường Archimedes Academy - Hà Nội
Với mục đích kiểm tra đánh giá chất lượng định kỳ môn Toán đối với học sinh khối lớp 8, vừa qua, trường THCS Archimedes Academy – Hà Nội đã tổ chức kỳ thi kiểm tra tập trung Toán 8 tháng 9 năm học 2019 – 2020. Đề kiểm tra Toán 8 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội gồm 2 mã đề: đề số 1 và đề số 2, đề thi gồm 05 bài toán dạng tự luận, thời gian làm bài 90 phút. [ads] Trích dẫn đề kiểm tra Toán 8 tháng 9 năm 2019 – 2020 trường Archimedes Academy – Hà Nội : + Cho tam giác ABC, gọi M, N lần lượt là trung điểm của AB, AC. a) Tứ giác BCNM là hình gì? Vì sao? b) Gọi Q là trung điểm của NC. Đường thẳng qua Q song song với BC cắt BN tại E. Đường thẳng qua C song song với BN cắt đường thẳng QE tại K. Chứng minh rằng EK = BC. c) Đường thẳng QE cắt CM tại F. Chứng minh EF = 1/4.BC. d) Đường thẳng qua E vuông góc với AB cắt đường thẳng qua F vuông góc với AC tại I. Chứng minh tam giác BIC cân. + Chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến: A = (x – 3)^3 – x(x^2 + 27) + (3x)^2. + Tìm giá trị nhỏ nhất của biểu thức sau: Q = 3x^2 + 2y^2 + 4z^2 + 2xy + 4yz + 4xz – 4x – 2y + 5.