Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Giải bài toán chứa căn - Nguyễn Tiến

Tài liệu gồm 89 trang được biên soạn bởi thầy giáo Nguyễn Tiến tổng hợp kiến thức chuyên đề căn thức, giúp học sinh lớp 9 nắm được phương pháp giải các bài toán chứa căn, tài liệu không có các bài tập dạng nâng cao, phức tạp, phù hợp với các đối tượng học sinh học lớp 9 và học ôn thi vào 10 các trường công lập trên cả nước với các dạng đề về căn bậc hai không khó. PHÂN DẠNG TOÁN CHỨA CĂN. A. TÌM HIỂU VỀ CĂN BẬC HAI. B. TÌM ĐIỀU KIỆN ĐỂ BIỂU THỨC XÁC ĐỊNH (CÓ NGHĨA, TỒN TẠI). C. CÁC BÀI TOÁN RÚT GỌN BIỂU THỨC CHỨA CĂN. DẠNG 1 : RÚT GỌN BIỂU THỨC CHỨA SỐ. + Loại 1: Dạng chứa căn số học đơn giản. + Loại 2: Dạng “biểu thức số trong căn” tiềm ẩn “là hằng đẳng thức”. + Loại 3: Dạng sử dụng biểu thức liên hợp, trục căn thức, quy đồng. + Loại 4: Chứng minh đẳng thức số. + Loại 5: Chứng minh bất đẳng thức. + Loại 6: Căn bậc ba. DẠNG 2 : CÁC DẠNG TOÁN CĂN CHỨA CHỮ (CHỨA ẨN). DẠNG TOÁN GIẢI PHƯƠNG TRÌNH CHỨA CĂN THỨC. + Loại 1: Phương trình trong căn có thể viết dưới dạng bình phương của một biểu thức. + Loại 2: Phương trình dạng √f(x) = √g(x). + Loại 3: Phương trình chứa biểu thức dưới dấu căn không viết được dưới dạng bình phương (trong phương trình chỉ chứa một căn thức). + Loại 4: Phương trình chứa nhiều căn thức, các căn thức có thể đưa về dạng giống nhau. [ads] + Loại 5: Phương trình chứa các căn khác nhau, biểu thức trong căn không viết được dưới dạng bình phương. + Loại 6: Quy về phương trình bậc hai bằng phương pháp đặt ẩn phụ. + Loại 7: Phương trình chứa căn mà biểu thức trong căn ở dạng thương hoặc dạng tích. + Loại 8: Giải các phương trình căn bậc ba. DẠNG TOÁN RÚT GỌN BIỂU THỨC CHỨA CĂN. + Loại 1: Sử dụng các hằng đẳng thức. + Loại 2: Sử dụng phương pháp quy đồng. + Loại 3: Làm xuất hiện nhân tử chung rồi đơn giản biểu thức chứa căn sau đó quy đồng. DẠNG TOÁN CHỨA CĂN VÀ BÀI TOÁN PHỤ. + Bài toán 1: Tìm ẩn để biểu thức thỏa mãn một điều kiện cho trước (lớn hơn, nhỏ hơn, bằng một giá trị cho trước). + Bài toán 2. Tính giá trị của biểu thức tại giá trị cho trước. + Bài toán 3: Tìm a nguyên để biểu thức nguyên. + Bài toán 4: Tìm giá trị lớn nhất, nhỏ nhất. PHẦN BÀI TẬP. BÀI TOÁN TỔNG HỢP – TỰ GIẢI. PHẦN ĐÁP ÁN – HƯỚNG DẪN GIẢI. DẠNG TOÁN RÚT GỌN BIỂU THỨC CHỨA SỐ.  + Loại 1: Dạng chứa căn số học đơn giản. + Loại 2: Dạng “biểu thức số trong căn” tiềm ẩn “là hằng đẳng thức”. + Loại 3: Dạng sử dụng biểu thức liên hợp, trục căn thức, quy đồng. DẠNG TOÁN RÚT GỌN BIỂU THỨC CHỨA CĂN. + Loại 1: Sử dụng các Hằng đẳng thức. + Loại 2: Sử dụng phương pháp quy đồng. + Loại 3: Làm xuất hiện nhân tử chung rồi đơn giản biểu thức chứa căn sau đó quy đồng. DẠNG TOÁN CHỨA CĂN VÀ BÀI TOÁN PHỤ.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ
Nội dung Chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ Bản PDF - Nội dung bài viết Chuyên đề về hình trụ, diện tích xung quanh và thể tích Chuyên đề về hình trụ, diện tích xung quanh và thể tích Chuyên đề này bao gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức quan trọng về hình trụ, diện tích xung quanh và thể tích của hình trụ. Nó cung cấp phân dạng và hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm liên quan đến chuyên đề này, nhằm hỗ trợ học sinh trong quá trình học tập chương trình hình học cấp 2, đặc biệt là chương 3 bài số 1. A. Trọng tâm cơ bản cần đạt: I. Tóm tắt lý thuyết: Cho hình trụ có bán kính đáy R và chiều cao h, ta có các công thức sau: Diện tích xung quanh: Sxq = 2πRh. Diện tích đáy: S = πR^2. Diện tích toàn phần: Stp = 2πRh + 2πR^2. Thể tích: V = πR^2h. II. Bài tập và các dạng toán: Dạng 1: Tính bán kính đáy, chiều cao, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Phương pháp giải: Sử dụng các công thức để tính toán các giá trị cần tìm. Dạng 2: Bài tập tổng hợp. Phương pháp giải: Kết hợp kiến thức về hình học phẳng và công thức về hình trụ để giải bài tập. III. Bài tập cơ bản về nhà B. Nâng cao phát triển tư duy C. Trắc nghiệm rèn luyện phản xạ D. Tự luyện cơ bản và nâng cao
Chuyên đề diện tích hình tròn, hình quạt tròn
Nội dung Chuyên đề diện tích hình tròn, hình quạt tròn Bản PDF - Nội dung bài viết Chuyên đề diện tích hình tròn, hình quạt tròn Chuyên đề diện tích hình tròn, hình quạt tròn Tài liệu này gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, nhằm tổng hợp kiến thức trọng tâm về diện tích hình tròn và hình quạt tròn. Nó cung cấp phân loại dạng bài tập tự luận và trắc nghiệm, hướng dẫn chi tiết cách giải, giúp học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 10. I. Trọng tâm cơ bản cần đạt: - Công thức diện tích hình tròn: S = πR^2, với R là bán kính của hình tròn. - Công thức diện tích hình quạt tròn: S = πR^2n/360 hoặc S = lR/2 (là độ dài cung n0 của hình quạt tròn). II. Bài tập và các dạng toán: - Dạng 1: Tính diện tích hình tròn, hình quạt tròn và các loại lương có liên quan. Phương pháp giải: Sử dụng công thức và kiến thức đã học. - Dạng 2: Bài toán tổng hợp. Phương pháp giải: Tính góc ở tâm, bán kính đường tròn để tính diện tích hình tròn và quạt tròn. III. Bài tập cơ bản về nhà, nâng cao và phát triển tư duy. IV. Trắc nghiệm rèn luyện phản xạ, tự luyện cơ bản và nâng cao. Tài liệu này cung cấp cách giải chi tiết, từ cơ bản đến nâng cao, giúp học sinh hiểu rõ hơn về diện tích hình tròn và hình quạt tròn, từ đó có thể áp dụng linh hoạt vào việc giải các bài tập và bài toán liên quan.
Chuyên đề độ dài đường tròn, cung tròn
Nội dung Chuyên đề độ dài đường tròn, cung tròn Bản PDF - Nội dung bài viết Chuyên Đề Độ Dài Đường Tròn, Cung TrònTrọng Tâm Cơ Bản Cần ĐạtBài Tập và Các Dạng ToánBài Tập Cơ Bản Về NhàNâng Cao Phát Triển Tư DuyTrắc Nghiệm Rèn Luyện Phản XạPhiếu Bài Tự Luyện Cơ Bản Và Nâng Cao Chuyên Đề Độ Dài Đường Tròn, Cung Tròn Tài liệu này bao gồm 29 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức chính, phân loại dạng bài tập tự luận và trắc nghiệm về chuyên đề độ dài đường tròn, cung tròn. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 9. Đây là những kiến thức cơ bản mà học sinh cần nắm vững: Trọng Tâm Cơ Bản Cần Đạt Tóm Tắt Lý Thuyết: Bao gồm công thức tính độ dài đường tròn (chu vi đường tròn) và cung tròn. Học sinh sẽ học cách tính toán chu vi đường tròn và độ dài cung tròn dựa trên bán kính và góc quay. Bài Tập và Các Dạng Toán Dạng 1: Học sinh sẽ được yêu cầu tính độ dài đường tròn và cung tròn bằng cách áp dụng công thức đã học trong phần lý thuyết. Dạng 2: Đây là một số bài toán tổng hợp đòi hỏi học sinh kết hợp kiến thức đã học để giải quyết. Bài Tập Cơ Bản Về Nhà Học sinh sẽ được giao bài tập cơ bản về nhà để đảm bảo họ nắm chắc kiến thức cơ bản. Nâng Cao Phát Triển Tư Duy Phần này sẽ giúp học sinh mở rộng kiến thức và phát triển tư duy toán học thông qua các bài toán mở rộng và ứng dụng kiến thức đã học. Trắc Nghiệm Rèn Luyện Phản Xạ Phần này hỗ trợ học sinh rèn luyện kỹ năng tư duy nhanh, phản xạ thông qua việc giải trắc nghiệm. Phiếu Bài Tự Luyện Cơ Bản Và Nâng Cao Học sinh sẽ được cung cấp phiếu bài tập tự luyện để tự kiểm tra kiến thức cơ bản và nâng cao của mình.
Chuyên đề tứ giác nội tiếp
Nội dung Chuyên đề tứ giác nội tiếp Bản PDF - Nội dung bài viết Chuyên đề tứ giác nội tiếpTrọng tâm cơ bản cần đạtNâng cao phát triển tư duy Chuyên đề tứ giác nội tiếp Tài liệu này bao gồm 38 trang, được viết bởi tác giả Toán Học Sơ Đồ. Nó tổng hợp kiến thức quan trọng, phân loại và hướng dẫn cách giải các dạng bài tập tự luận & trắc nghiệm về chuyên đề tứ giác nội tiếp. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 9, chương 3, bài số 7. Trọng tâm cơ bản cần đạt 1. Tóm tắt lý thuyết: - Định nghĩa tứ giác nội tiếp. - Định lí về tứ giác nội tiếp. - Một số dấu hiệu nhận biết tứ giác nội tiếp. 2. Bài tập và các dạng toán: - Dạng 1: Chứng minh tứ giác nội tiếp bằng cách sử dụng các phương pháp như chứng minh tổng hai góc đối bằng 180°, chứng minh tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới một góc α, chứng minh tứ giác có góc ngoài tại một đỉnh bằng góc trong của đỉnh đối diện, hoặc tìm một điểm cách đều bốn đỉnh của tứ giác. - Dạng 2: Sử dụng tứ giác nội tiếp để chứng minh các góc bằng nhau, các đoạn thẳng bằng nhau, các đường thẳng song song hoặc đồng quy, các tam giác đồng dạng. 3. Bài tập về nhà và phiếu bài tập tự luyện cơ bản và nâng cao. Nâng cao phát triển tư duy Tài liệu này giúp học sinh phát triển tư duy logic, sáng tạo và kỹ năng giải quyết vấn đề thông qua việc áp dụng kiến thức về tứ giác nội tiếp vào các bài toán phức tạp. Với cách trình bày dễ hiểu và linh hoạt, tài liệu này sẽ giúp học sinh nắm vững kiến thức về tứ giác nội tiếp và rèn luyện kỹ năng giải bài tập một cách chính xác và logic.