Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp tọa độ hóa hình không gian

Tài liệu gồm 51 trang hướng dẫn sử dụng phương pháp tọa độ hóa để giải bài toán hình học không gian cổ điển, tài liệu được biên soạn bởi nhóm tác giả Tạp chí và Tư liệu Toán học. Khái quát tài liệu phương pháp tọa độ hóa hình không gian : Đôi khi trong giải toán hình học không gian cổ điển ta sẽ gặp khá nhiều bài toán tính toán phức tạp, tuy nhiên trong phòng thi ta lại không có nhiều thời gian, vì thế trong chương này chúng ta sẽ tìm hiểu một phương pháp giải quyết nhanh các bài toán tính toán phức tạp và khó trong hình không gian cổ điển, liên quan tới cực trị, góc, khoảng cách. I. Ý TƯỞNG . PHƯƠNG PHÁP: Trên mạng có một vài tài liệu nói về phương pháp này và chia thành rất nhiều dạng, điều đó làm chúng ta khi áp dụng có phần khó nhớ và máy móc, tuy nhiên chúng ta chỉ cần nắm được dấu hiệu và phương pháp sau: + Bước 1 . Chọn hệ trục tọa độ. Trong bước này ta sẽ xác định 3 đường vuông góc có trong bài toán và gọi đó là 3 đường cơ sở. Thông thường thì ta sẽ quy ước trục Ox hướng vào mình, trục Oz nằm ngang, còn lại là trục Oy. [ads] + Bước 2 . Xác định tọa độ các điểm liên trên hình liên quan tới bài toán. Với những bạn chưa quen thì chúng ta xác định tọa độ hình chiếu của điểm cần tìm lên các trục, từ đó sẽ suy ra được tọa độ điểm cần tính. + Bước 3 . Áp dụng công thức. Sau đây chúng ta sẽ nhắc lại một số công thức cần nhớ trong phần này: + Diện tích và thể tích: Diện tích tam giác, Thể tích tứ diện, Thể tích hình hộp, Thể tích hình lăng trụ. + Góc: Góc giữa 2 mặt phẳng, Góc giữa 2 đường thẳng, Góc giữa đường thẳng và mặt phẳng. + Khoảng cách:  Khoảng cách từ điểm đến mặt phẳng, Khoảng cách từ một điểm đến 1 đường thẳng, Khoảng cách giữa hai đường thẳng chéo nhau. Chú ý . Thông thường các bài mà không có 3 đường vuông góc thì ta sẽ phải tự dựng thêm để gắn tọa độ và những bài liên quan tới hình lập phương, hình hộp chữ nhật, chối chóp có 3 đường vuông góc, lăng trụ đứng thì khi áp dụng phương pháp này sẽ giải rất nhanh. II. CÁC BÀI TOÁN : Tuyển chọn 59 bài toán hình học không gian cổ điển được giải bằng phương pháp tọa độ hóa.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm tọa độ trong không gian
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tọa độ trong không gian, một chủ đề rất quan trọng trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Bên cạnh tài liệu tọa độ trong không gian dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm tọa độ trong không gian: A. LÝ THUYẾT 1. Hệ trục tọa độ trong không gian. 2. Tọa độ của vectơ. 3. Tọa độ của điểm. 4. Tích có hướng của hai vectơ. 5. Một vài thao tác sử dụng máy tính bỏ túi (Casio Fx570 Es Plus, Casio Fx570 Vn Plus, Vinacal 570 Es Plus). B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách, một chủ đề rất quan trọng trong chương trình Hình học 11 chương 3. Bên cạnh tài liệu góc và khoảng cách dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. [ads] Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm góc và khoảng cách: A. KIẾN THỨC CƠ BẢN I. GÓC 1. Góc giữa hai mặt phẳng. 2. Góc giữa hai đường thẳng, góc giữa đường thẳng và mặt phẳng. II. KHOẢNG CÁCH 1. Khoảng cách từ một điểm đến mặt phẳng, khoảng cách giữa hai mặt phẳng song song. 2. Khoảng cách từ một điểm đến một đường thẳng – khoảng cách giữa hai đường thẳng. B. KỸ NĂNG CƠ BẢN + Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến mặt phẳng; biết cách khoảng cách giữa hai mặt phẳng song song. + Nhớ và vận dụng được công thức tính khoảng cách từ một điểm đến một đường thẳng; biết cách tính khoảng cách giữa hai đường thẳng song song; khoảng cách giữa hai đường thẳng chéo nhau; khoảng cách từđường thẳng đến mặt phẳng song song. + Nhớ và vận dụng được công thức góc giữa hai đường thẳng; góc giữa đường thẳng và mặt phẳng; góc giữa hai mặt phẳng. + Áp dụng được góc và khoảng cách vào các bài toán khác. C. BÀI TẬP TRẮC NGHIỆM
Xác định tâm, bán kính, diện tích và thể tích của mặt cầu
Tài liệu gồm 12 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán xác định tâm, bán kính, diện tích và thể tích của mặt cầu, được phát triển dựa trên câu 14 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu xác định tâm, bán kính, diện tích và thể tích của mặt cầu: A. KIẾN THỨC CẦN NHỚ 1. Phương trình mặt cầu dạng chính tắc Cho mặt cầu có tâm I(a;b;c) có bán kính R. Khi đó phương trình chính tắc của mặt cầu là (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2. 2. Phương trình mặt cầu dạng khai triển Phương trình mặt cầu dạng khai triển là (S): x^2 + y^2 + z^2 – 2ax – 2by – 2cz + d = 0. Khi đó mặt cầu có có tâm I(a;b;c), bán kính R = √(a^2 + b^2 + c^2 – d) với a^2 + b^2 + c^2 – d > 0. B. BÀI TẬP MẪU 1. Đề bài : Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu: (S): (x + 1)^2 + (y – 2)^2 + (z – 1)^2 = 9. Tìm tọa độ tâm I và tính bán kính R của (S). 2. Phân tích hướng dẫn giải a. Dạng toán: Đây là dạng toán sử dụng tính chất để xác định tâm và bán kính của mặt cầu. b. Hướng giải: + Bước 1: Dựa trên phương trình mặt cầu dạng chính tắc tìm tâm và bán kính của mặt cầu. + Bước 2: Mặt cầu (S): (x – a)^2 + (y – b)^2 + (z – c)^2 = R^2 có tâm I(a;b;c) và bán kính R. C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN (có đáp án và lời giải chi tiết).
Bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ
Tài liệu gồm 13 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT 2020, hướng dẫn giải bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ, được phát triển dựa trên câu 13 đề thi tham khảo THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu bài toán tìm hình chiếu của điểm trên mặt phẳng tọa độ: 1. Cho điểm M(x;y;z): Hình chiếu của điểm M trên Ox là M1(x;0;0); Hình chiếu của điểm M trên Oy là M2(0;y;0); Hình chiếu của điểm M trên Oz là M3(0;0;z); Hình chiếu của điểm M trên (Oxy) là M4(x;y;0); Hình chiếu của điểm M trên (Oyz) là M5(0;y;z); Hình chiếu của điểm trên (Ozx) là M6(x;0;z). 2. Tìm hình chiếu của điểm A trên mặt phẳng (α). + Viết phương trình đường thẳng d đi qua A và vuông góc với (α). + Hình chiếu H của điểm A là giao điểm của đường thẳng d và (α). [ads] 3. Tìm hình chiếu d’ của đường thẳng d trên mặt phẳng (α). Cách 1 : – Nếu đường thẳng d song song với (α) thì d // d’. + Lấy điểm M thuộc đường thẳng d và tìm hình chiếu M’ của điểm M trên (α). + Đường thẳng d’ đi qua M’ và song song với đường thẳng d. – Nếu đường thẳng d cắt (α) tại M. + Lấy điểm N thuộc đường thẳng d và tìm hình chiếu N’ của N trên (α). + Đường thẳng d’ đi qua hai điểm là M và N’. Cách 2 : + Viết phương trình mặt phẳng (β) chứa đường thẳng d và vuông góc với (α). + Khi đó đường thẳng d’ là giao tuyến của hai mặt phẳng (α) và (β). 4. Tìm hình chiếu A’ của A trên đường thẳng d. Cách 1 : + Viết phương trình mặt phẳng (P) chứa A và vuông góc với d. + Hình chiếu A’ là giao điểm của d và (P). Cách 2 : + Tìm tọa độ điểm A’ theo tham số t (A’ thuộc d). + Lập phương trình AA’.ud = 0. Giải phương trình tìm t suy ra tọa độ điểm A’. 5. Tìm điểm M’ đối xứng với M qua (P). + Tìm hình chiếu H của M trên (P) (khi đó H là trung điểm MM’). + Áp dụng công thức tính tọa độ trung điểm suy ra tọa độ điểm M’.