Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng hàm số lượng giác và phương trình lượng giác Toán 11 CTST

Tài liệu gồm 196 trang, được biên soạn bởi thầy giáo Trần Đình Cư, bao gồm tóm tắt kiến thức cơ bản cần nắm, phân loại và phương pháp giải bài tập chuyên đề hàm số lượng giác và phương trình lượng giác trong chương trình môn Toán 11 Chân Trời Sáng Tạo (CTST). MỤC LỤC : BÀI 1 . GÓC LƯỢNG GIÁC 4. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 4. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 6. Dạng 1. Đơn vị đo độ và rađian 6. 1. Phương pháp 6. 2. Các ví dụ minh họa 6. Dạng 2. Biểu diễn cung lượng giác trên đường tròn lượng giác 6. 1. Phương pháp 6. 2. Các ví dụ minh họa 7. Dạng 3. Độ dài của một cung tròn 8. 1. Phương pháp giải 8. 2. Các ví dụ minh họa 8. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA BÀI TẬP 9. D. BÀI TẬP TRẮC NGHIỆM 15. BÀI 2 . GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC LƯỢNG GIÁC 25. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 25. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 28. Dạng 1. Tính giá trị của góc còn lại hoặc của một biểu thức lượng giác khi biết một giá trị lượng giác 28. 1. Phương pháp giải 28. 2. Các ví dụ minh họa 28. Dạng 2. Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác 31. 1. Phương pháp giải 31. 2. Các ví dụ minh họa 31. Dạng 3. Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức 33. 1. Phương pháp giải 33. 2. Các ví dụ minh họa 33. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 36. D. BÀI TẬP TRẮC NGHIỆM 41. BÀI 3 . CÁC CÔNG THỨC LƯỢNG GIÁC 66. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 66. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI BÀI TẬP 66. Dạng 1. Sử dụng công thức cộng 66. 1. Phương pháp giải 66. 2. Các ví dụ minh họa 67. Dạng 2. Sử dụng công thức nhân đôi và công thức hạ bậc 71. 1. Phương pháp 71. 2. Các ví dụ minh họa 72. Dạng 3. Công thức biến đổi tổng thành tích và tích thành tổng 76. 1. Phương pháp giải. 76. 2. Các ví dụ minh họa 76. Dạng 4. bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác 81. 1. Phương pháp giải 81. 2. Các ví dụ điển hình 81. Dạng 5. chứng minh đẳng thức, bất đẳng thức trong tam giác 84. 1. Phương pháp giải 84. 2. Các ví dụ minh họa 84. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 91. D. BÀI TẬP TRẮC NGHIỆM 98. BÀI 4 . HÀM SỐ LƯỢNG GIÁC VÀ ĐỒ THỊ 127. A. TÓM TẮT KIẾN THỨC CƠ BẢN CẦN NẮM 127. B. PHÂN LOẠI VÀ PHƯƠNG PHÁP LỜI GIẢI BÀI TẬP 130. Dạng 1. Tìm tập xác đinh của hàm số 130. 1. Phương pháp 130. 2. Các ví dụ mẫu 131. Dạng 2. Xét tính chẵn lẻ của hàm số 133. 1. Phương pháp 133. 2. Các ví dụ mẫu 133. Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác 136. 1. Phương pháp 136. 2. Ví dụ mẫu 136. Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó 139. 1. Phương pháp 139. 2. Ví dụ mẫu 140. Dạng 5. Đồ thị của hàm số lượng giác 141. 1. Phương pháp 141. 2. Các ví dụ mẫu 142. C. GIẢI BÀI TẬP SÁCH GIÁO KHOA 145. D. BÀI TẬP TRẮC NGHIỆM 148. BÀI TẬP CUỐI CHƯƠNG 1 178. CÂU HỎI TRẮC NGHIỆM 178. BÀI TẬP TỰ LUẬN 181. BÀI TẬP TỔNG ÔN CHƯƠNG 1 185. PHẦN 1. TRẮC NGHIỆM 185. PHẦN 2. TỰ LUẬN 193.

Nguồn: toanmath.com

Đọc Sách

Biến đổi lượng giác và hệ thức lượng - Võ Anh Khoa, Hoàng Bá Minh
Cuốn sách Biến đổi lượng giác và hệ thức lượng được biên soạn với mục đích cung cấp, bổ sung kiến thức cho học sinh THPT và một số bạn đọc quan tâm đến mảng kiến thức này trong quá trình học tập và làm việc. Ở cuốn sách này, ngoài việc đưa ra những khái niệm và dạng bài tập cơ bản, chúng tôi sẽ thêm vào đó lịch sử và ứng dụng của môn học này để các bạn hiểu rõ hơn “Nó xuất phát từ đâu và tại sao chúng ta lại phải học nó?”. Ở các chương chính, chúng tôi chia làm 3 phần: [ads] + Phần I: Nêu lý thuyết cùng ví dụ minh họa ngay sau đó, giúp bạn đọc hiểu và biết cách trình bày bài. Đồng thời đưa ra các dạng toán cơ bản, thường gặp trong quá trình làm bài trên lớp của học sinh THPT. Ở phần này, chúng tôi sẽ trình bày một số bài để bạn đọc có thể nắm vững hơn, tránh sai sót. + Phần II: Trong quá trình tham khảo và tổng hợp tài liệu, chúng tôi sẽ đưa vào phần này các dạng toán khó nhằm giúp cho các học sinh bồi dưỡng, rèn luyện kĩ năng giải LƯỢNG GIÁC thành thạo hơn khi gặp phải những dạng toán này. + Phần III: Chúng tôi sẽ đưa ra lời giải gợi ý cho một số bài, qua đó bạn đọc kiểm tra lại đáp số, lời giải hoặc cũng có thể tham khảo thêm.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Trần Văn Tài
Tài liệu gồm 137 trang với nội dung gồm các phần: 1. Phương trình lượng giác đưa về bậc hai và bậc cao cùng 1 hàm lượng giác 2. Phương trình lượng giác bậc nhất đối với sin và cosin (phương trình cổ điển) 3. Phương trình lượng giác đẳng cấp (bậc 2, bậc 3, bậc 4) 4. Phương trình lượng giác đối xứng 5. Một số phương trình lượng giác dạng khác Trong mỗi phần gồm tóm tắt lý thuyết, các dạng toán, ví dụ mẫu và bài tập vận dụng có lời giải chi tiết.
Chuyên đề Lượng giác - Phạm Thu Hiền
Lượng giác đóng vai trò quan trọng và xuyên suốt trong chương trình toán phổ thông và được ứng dụng khá nhiều trong thực tế, đặc biệt là trong lĩnh vực nghiên cứu thiên văn. Đây sẽ là một trong những vấn đề quan trọng trong kì thi THPT quốc gia 2018, khi chương trình 10 và 11 được đưa vào trong đề thi. Chủ đề lượng giác được chia làm ba phần: + Phần 1: Cơ sở lí thuyết như cung liên kết, công thức lượng giác, hằng đẳng thức lượng giác, hàm số lượng giác. [ads] + Phần 2: Các dạng phương trình lượng giác thường gặp. + Phần 3: Một số bài toán lượng giác điển hình có liên quan. Chuyên đề chủ yếu xoay quanh các bài toán THPT, hi vọng sẽ giúp ích được phần nào cho bạn đọc, đặc biệt là các bạn học sinh THPT. Sẽ không tránh khỏi thiếu sót khi biên tập, rất mong nhận được sự đóng góp từ quý bạn đọc để chuyên đề ngày một hoàn thiện hơn.
Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio - Nguyễn Tiến Chinh
Tài liệu Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio của thầy giáo Nguyễn Tiến Chinh gồm 14 trang. Tài liệu hướng dẫn mẹo bấm máy tính nhanh của một số bài toán lượng giác thường gặp.