Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán tháng 9 năm 2023 2024 trường THCS Lê Ngọc Hân Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán tháng 9 năm 2023 2024 trường THCS Lê Ngọc Hân Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát Toán lớp 9 tháng 9 năm 2023 - 2024 trường THCS Lê Ngọc Hân Hà Nội Đề khảo sát Toán lớp 9 tháng 9 năm 2023 - 2024 trường THCS Lê Ngọc Hân Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề khảo sát chất lượng môn Toán lớp 9 tháng 9 năm học 2023 – 2024 tại trường THCS Lê Ngọc Hân, Hà Nội. Đề thi sẽ có hình thức tự luận, thời gian làm bài là 90 phút. Dưới đây là một số bài toán trích dẫn từ Đề khảo sát Toán lớp 9 tháng 9 năm 2023 - 2024 trường THCS Lê Ngọc Hân - Hà Nội: Bài 1: Giải bài toán bằng cách lập phương trình: Một người đi xe máy dự định đi từ A đến B với vận tốc 36km/h. Nhưng khi đi người ấy giảm vận tốc 6km/h nên đã đến B chậm hơn dự định là 24 phút. Tính quãng đường AB. Bài 2: Bài toán thực tế: Khi mặt trời chiếu qua đỉnh ngọn cây thì góc tạo bởi tia nắng mặt trời với mặt đất là 29° và bóng cây trên mặt đất là 16m. Tính chiều cao của cây (làm tròn đến hàng đơn vị). Bài 3: Bài toán thực tế: Khúc sông rộng 300m, nước chảy xiết. Một con thuyền xuất phát từ bến A đi sang bờ bên kia. Do bị nước đẩy nên con thuyền đi theo đường AB. Biết CAB = 60° và hai bờ sông song song. Tính quãng đường AB. Hy vọng rằng đề khảo sát này sẽ giúp các em học sinh ôn tập kiến thức một cách hiệu quả và tự tin hơn trước kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh đạt kết quả tốt! Xin cảm ơn.

Nguồn: sytu.vn

Đọc Sách

Đề HSG lớp 9 môn Toán vòng 2 năm 2023 2024 phòng GD ĐT thành phố Hải Dương
Nội dung Đề HSG lớp 9 môn Toán vòng 2 năm 2023 2024 phòng GD ĐT thành phố Hải Dương Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 2 năm 2023 - 2024 phòng GD&ĐT thành phố Hải Dương Đề HSG Toán lớp 9 vòng 2 năm 2023 - 2024 phòng GD&ĐT thành phố Hải Dương Chào mừng đến với Đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2023 - 2024 của Phòng Giáo dục và Đào tạo thành phố Hải Dương, tỉnh Hải Dương! Đề thi này sẽ là cơ hội thách thức và phát triển kiến thức của các em học sinh lớp 9. Trích dẫn một số câu hỏi thú vị trong Đề thi: Cho đa thức \( A = 12x^2 - 3y^2 + 8xy + 2x + y \) biết rằng với \( x = a \) và \( y = b \) thì \( A = 0 \). Chứng minh rằng \( 6a + b + 1 \) là bình phương của một số nguyên. Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Gọi M là giao điểm của BF và CE. Chứng minh rằng \( AB \times CF = AC \times AE \). Cho tam giác ABC, điểm D trên cạnh BC sao cho \( DC = 4 \times BD \). Điểm M thay đổi trên đoạn thẳng AD, BM cắt AC tại E, CM cắt AB tại F. Xác định vị trí điểm M trên AD để diện tích tam giác DEF đạt giá trị lớn nhất. Hy vọng rằng các em sẽ tự tin và thành công trong việc giải quyết các bài toán thú vị và phức tạp trong Đề thi này. Chúc các em học tốt và đạt kết quả cao!
Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường THCS Cầu Giấy Hà Nội
Nội dung Đề chọn đội tuyển HSG lớp 9 môn Toán vòng 2 năm 2023 2024 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề chọn đội tuyển HSG Toán lớp 9 vòng 2 năm 2023-2024 trường THCS Cầu Giấy Hà Nội Đề chọn đội tuyển HSG Toán lớp 9 vòng 2 năm 2023-2024 trường THCS Cầu Giấy Hà Nội Chào các thầy cô giáo và các bạn học sinh lớp 9. CLB Văn Hóa Toán trường THCS Cầu Giấy sẽ tổ chức đề chọn đội tuyển học sinh giỏi môn Toán lớp 9 vòng 2 trong năm học 2023-2024. Kỳ thi sẽ diễn ra vào ngày thứ Năm, ngày 21 tháng 09 năm 2023. Dưới đây là một số câu hỏi mẫu trong đề thi: - Cho các số thực không âm a, b, c thỏa mãn a + b + c = 4. Hãy tìm giá trị lớn nhất của biểu thức P = 3a + ab + abc. - Cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo. E là điểm bất kì thuộc đoạn OB, trên tia đối của tia EC lấy điểm F sao cho OF = OC. Chứng minh rằng FE là phân giác của góc BFD và kẻ ET vuông góc với FD tại T. Chứng minh rằng FO, AH và ST đồng quy. - Xét tập T = {1; 2; 3; ...; 10}. Hãy chỉ ra một tập con U có 4 phần tử của T thỏa mãn với mọi x, y thuộc U, x khác y thì x + y không chia hết cho x - y.
Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Phú Xuyên Hà Nội (Vòng 1)
Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Phú Xuyên Hà Nội (Vòng 1) Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 Phòng GD&ĐT Phú Xuyên Hà Nội (Vòng 1) Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 Phòng GD&ĐT Phú Xuyên Hà Nội (Vòng 1) Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2023 - 2024 tại phòng Giáo dục và Đào tạo UBND huyện Phú Xuyên, thành phố Hà Nội (Vòng 1). Trích dẫn các câu hỏi trong đề thi: Giải bất phương trình: x² - 9x + 14 < 0. Chứng minh rằng với mọi số nguyên n thì n³ + 3n² + 2018n chia hết cho 6. Cho hình bình hành ABCD có đường chéo AC lớn hơn đường chéo BD. Gọi E, F lần lượt là hình chiếu của B và D xuống đường thẳng AC. Tứ giác BEDF là hình gì, vì sao? Chứng minh rằng: a) CHK đồng dạng BCA. b) AB.AH + AD.AK = AC². Cho tam giác ABC nhọn, các đường cao AK, BD, CE cắt nhau tại H. Giả sử HK = AK/3. Chứng minh rằng tanB.tanC = 3. Đây là một đề thi thách thức và đa dạng, giúp các em học sinh lớp 9 rèn luyện khả năng suy luận, tư duy logic và phát triển khả năng giải quyết vấn đề. Hy vọng các em sẽ vượt qua thử thách này một cách xuất sắc và tự tin.
Đề học sinh giỏi Toán THCS năm 2023 2024 phòng GD ĐT Đông Hà Quảng Trị
Nội dung Đề học sinh giỏi Toán THCS năm 2023 2024 phòng GD ĐT Đông Hà Quảng Trị Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán THCS năm 2023 - 2024 Đề học sinh giỏi Toán THCS năm 2023 - 2024 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi chọn học sinh giỏi văn hóa cấp THCS môn Toán năm học 2023 - 2024 do phòng Giáo dục và Đào tạo thành phố Đông Hà, tỉnh Quảng Trị tổ chức. Đề thi bao gồm các câu hỏi thú vị và đa dạng, nhằm khuyến khích sự sáng tạo và tư duy logic của các em. Dưới đây là một số câu hỏi từ đề thi: Câu 1: Cho hình bình hành ABCD. Gọi E, F lần lượt là hình chiếu của B, D lên đường chéo AC và G, H lần lượt là hình chiếu của A, C lên đường chéo BD. Biết rằng 4 điểm E, F, G, H tạo thành một tứ giác. Chứng minh tứ giác đó cũng là một hình bình hành. Câu 2: Cho tam giác ABC vuông tại C có CB = 3CA. Gọi D, E là các điểm trên cạnh BC sao cho CD = DE = EB. Chứng minh rằng ADC + AEC + ABC = 90°. Câu 3: Các số nguyên dương được chia vào các tập hợp S1, S2, S3, S4... như sau: S = {1}, S2 = {2;3}, S3 = {4;5;6}, S4 = {7;8;9;10} và cứ thế tiếp tục. Hỏi phần tử nhỏ nhất và phần tử lớn nhất của tập S2023 là bao nhiêu? Đề thi này sẽ giúp các em rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và nâng cao kiến thức Toán của mình. Chúc các em thành công trong kỳ thi sắp tới!