Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 12 môn Toán THPT chuyên năm học 2019 2020 sở GD ĐT Vĩnh Phúc

Nội dung Đề thi HSG lớp 12 môn Toán THPT chuyên năm học 2019 2020 sở GD ĐT Vĩnh Phúc Bản PDF Ngày …/10/2019, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi Toán lớp 12 chương trình THPT chuyên năm học 2019 – 2020. Đề thi HSG Toán lớp 12 THPT chuyên năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc được biên soạn theo dạng đề tự luận với 05 bài toán, thời gian làm bài 180 phút, đề thi gồm có 01 trang, có lời giải chi tiết và hướng dẫn chấm. Trích dẫn đề thi HSG Toán lớp 12 THPT chuyên năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc : + Cho tam giác nhọn ABC có đường cao AH. Đường tròn nội tiếp (I) của tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Đường tròn (A) có tâm A bán kính AE cắt đoạn thẳng AH tại điểm K. Đường thẳng IK cắt đường thẳng BC tại P. Các đường thẳng DK và PK cắt đường tròn (A) lần lượt tại Q và T khác K. a) Chứng minh rằng tứ giác TDPQ nội tiếp và ba điểm Q, A, P thẳng hàng. b) Đường thẳng DK cắt đường tròn (I) tại điểm thứ hai là X. Chứng minh rằng ba đường thẳng AX, EF, TI đồng quy. c) Chứng minh rằng đường tròn đường kính AP tiếp xúc với đường tròn (I). [ads] + Cho P(x) là một đa thức khác hằng số với hệ số thực sao cho tất cả các nghiệm của nó đều là số thực. Giả sử tồn tại một đa thức Q(x) với hệ số thực sao cho (P(x))^2 = P(Q(x)) với mọi x thuộc R. Chứng minh rằng tất cả các nghiệm của đa thức P(x) đều bằng nhau. + Một tập hợp gồm 3 số nguyên dương được gọi là tập Pytago nếu 3 số này là độ dài ba cạnh của một tam giác vuông. Chứng minh rằng với hai tập Pytago P, Q bất kỳ, ta luôn tìm được m tập Pytago P1, P2 … Pm (m ≥ 2) sao cho P1 = P, Pm = Q và Pi giao Pi+1 khác rỗng với mọi 1 ≤ i ≤ m – 1.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử chọn HSG Toán 12 năm 2018 - 2019 cụm Tân Yên - Bắc Giang
Đề thi thử chọn HSG Toán 12 năm 2018 – 2019 cụm Tân Yên – Bắc Giang gồm 6 trang, đề gồm 40 câu hỏi trắc nghiệm và 3 bài toán tự luận, yêu cầu học sinh hoàn thành bài làm trong thời gian 120 phút, kỳ thi được diễn ra vào ngày 23 tháng 12 năm 2018. Trích dẫn đề thi thử chọn HSG Toán 12 năm 2018 – 2019 cụm Tân Yên – Bắc Giang : + Anh Đua muốn tiết kiệm tiền để sắm Iphone-X nên mỗi tháng đều đặn gửi vào ngân hàng một khoản tiền a đồng theo hình thức lãi kép với lãi suất 0,7 % mỗi tháng. Biết rằng sau 2 năm anh Đua có số tiền trong ngân hàng là 40 triệu đồng. Hỏi số tiền a gần với số tiền nào nhất trong các số sau? [ads] + Cho hình vuông ABCD và ABEF cạnh bằng 1, lần lượt nằm trên hai mặt phẳng vuông góc với nhau. Gọi H là điểm chia EH = 1/3.ED và S là điểm trên tia đối của HB sao cho SH = 1/3.BH. Thể tích khối đa diện ABCDSEF là? + Cho (H) là hình phẳng giới hạn bởi parabol y = 2x^2 – 1 và nửa đường tròn có phương trình y = √2 – x^2 (với -√2 ≤ x ≤ 2) (phần tô đậm trong hình vẽ). Diện tích của (H) bằng?
Đề thi chọn HSG Toán 12 cấp tỉnh năm học 2018 - 2019 sở GDĐT Ninh Bình
Đề thi chọn HSG Toán 12 cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Ninh Bình mã đề 132 được biên soạn nhằm tuyển chọn học sinh giỏi, học viên giỏi môn Toán lớp 12 cấp tỉnh khối THPT năm học 2018 – 2019, kỳ thi được diễn ra vào ngày 15 tháng 12 năm 2018, đề thi gồm 7 trang với 56 câu hỏi trắc nghiệm khách quan và 4 bài toán tự luận, thí sinh có 180 phút để hoàn thành đề thi này. Trích dẫn đề thi chọn HSG Toán 12 cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Ninh Bình : + Một cơ sở sản xuất đồ gia dụng được đặt hàng làm các chiếc hộp kín hình trụ bằng nhôm để đựng rượu có thể tích là V = 28πa^3 (a > 0). Để tiết kiệm sản xuất và mang lại lợi nhuận cao nhất thì cơ sở sẽ sản xuất những chiếc hộp hình trụ có bán kính là R sao cho diện tích nhôm cần dùng là ít nhất. Tìm R. [ads] + Cho hình chóp S.ABC có SA = SB = SC và tam giác ABC vuông tại C. Gọi H là hình chiếu vuông góc của S lên mặt phẳng (ABC). Mệnh đề nào dưới đây đúng? A. H là trung điểm cạnh AB. B. H là trọng tâm tam giác ABC. C. H là trung điểm cạnh BC. D. H là trung điểm cạnh AC. + Vào ngày 15 hàng tháng ông An đều đến gửi tiết kiệm tại ngân hàng SHB số tiền 5 triệu đồng theo hình thức lãi kép với kì hạn 1 tháng, lãi suất tiết kiệm không đổi trong suốt quá trình gửi là 7,2%/năm. Hỏi sau đúng 3 năm kể từ ngày bắt đầu gửi ông An thu được số tiền cả gốc lẫn lãi là bao nhiêu (làm tròn đến nghìn đồng)?
Đề thi chọn HSG Toán 12 cấp cơ sở năm học 2018 - 2019 sở GD và ĐT Điện Biên
Đề thi chọn HSG Toán 12 cấp cơ sở năm học 2018 – 2019 sở GD và ĐT Điện Biên gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 04/12/2018, đề thi có lời giải chi tiết. Trích dẫn đề thi chọn HSG Toán 12 cấp cơ sở năm học 2018 – 2019 sở GD và ĐT Điện Biên : + Cho hình chóp tứ giác đều S.ABCD có AB = a, SA = a√3. Gọi O là giao điểm của AC và BD, G là trọng tâm tam giác SCD. Tính thể tích khối chóp S.OGC. Tính khoảng cách từ G đến mặt phẳng (SBC). Tính cosin góc giữa hai đường thẳng SA và BG. + Trong mặt phẳng tọa độ Oxy cho hai điểm A(0;9), B(3;6). Gọi D là miền nghiệm của hệ phương trình 2x – y + a ≤ 0 và 6x + 3y + 5a ≥ 0. Tìm tất cả các giá trị của a để AB ⊂ D. + Gọi S là tập hợp tất cả các số tự nhiên có 5 chữ số khác nhau được chọn từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9. Xác định số phần tử của S. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn là số chẵn.
Đề thi chọn học sinh giỏi Toán 12 THPT năm 2018 - 2019 sở GD và ĐT Thái Bình
giới thiệu đến quý thầy, cô và các em đề thi chọn học sinh giỏi Toán 12 THPT năm 2018 – 2019 sở GD và ĐT Thái Bình, kỳ thi được diễn ra vào ngày 07 tháng 12 năm 2018, đề thi gồm 1 trang với 6 bài toán tự luận, học sinh làm bài trong thời gian 180 phút (không kể thời gian giám thị giao đề). Trích dẫn đề thi chọn học sinh giỏi Toán 12 THPT năm 2018 – 2019 sở GD và ĐT Thái Bình : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 2/3, SA = a, SB = SC = SD = a/3. Gọi M là trung điểm của CD. Tính thể tích của khối chóp S.ABCM. Tính khoảng cách giữa SM và BC. [ads] + Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD, điểm M(1;0) là trung điểm của cạnh BC, điểm N thuộc cạnh CD sao cho CN = 2ND, phương trình đường thẳng AN là: x – y + 2 = 0. Tìm tọa độ điểm A biết điểm A có hoành độ dương. + Cho hàm số y = x^3 + 2(m + 1)x^2 + (8m – 3)x + 8m – 6. Tìm m để hàm số có cực đại, cực tiểu trong đó một điểm cực trị của đồ thị hàm số thuộc góc phần tư thứ hai, một điểm cực trị thuộc góc phần tư thứ tư của hệ trục tọa độ Oxy.