Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề số hữu tỉ số thực

Nội dung Phương pháp giải các dạng toán chuyên đề số hữu tỉ số thực Bản PDF - Nội dung bài viết Phương pháp giải các dạng toán chuyên đề số hữu tỉ - số thựcBài 1: Tập hợp các số hữu tỉBài 2: Cộng trừ số hữu tỉBài 3: Nhân, chia số hữu tỉBài 4: Giá trị tuyệt đối của số hữu tỉ, cộng, trừ, nhân, chia số thập phânBài 5 & 6: Lũy thừa của một số hữu tỉBài 7: Tỉ lệ thứcBài 8: Tính chất của dãy tỉ số bằng nhauBài 9: Số thập phân hữu hạn, số thập phân vô hạn tuần hoànBài 10: Làm tròn sốBài 11: Số vô tỉ, khái niệm về căn bậc haiBài 12: Số thựcÔn tập chương 1 Phương pháp giải các dạng toán chuyên đề số hữu tỉ - số thực Tài liệu này bao gồm 42 trang, tổng hợp lý thuyết từ sách giáo khoa và cung cấp phương pháp giải các dạng toán chuyên đề về số hữu tỉ và số thực trong chương trình Đại số 7. Nội dung tài liệu bao gồm các phần sau: Bài 1: Tập hợp các số hữu tỉ Trình bày cách sử dụng các kí hiệu, biểu diễn số hữu tỉ và so sánh các số hữu tỉ. Bài 2: Cộng trừ số hữu tỉ Hướng dẫn cách cộng trừ hai số hữu tỉ, viết số hữu tỉ dưới dạng tổng hoặc hiệu, cũng như tính tổng hoặc hiệu của nhiều số hữu tỉ. Bài 3: Nhân, chia số hữu tỉ Phân tích cách nhân, chia hai số hữu tỉ, viết một số hữu tỉ dưới dạng tích hoặc thương của hai số hữu tỉ. Bài 4: Giá trị tuyệt đối của số hữu tỉ, cộng, trừ, nhân, chia số thập phân Bàn về việc tính giá trị tuyệt đối của một số hữu tỉ, cũng như các phép tính cộng, trừ, nhân, chia các số thập phân. Bài 5 & 6: Lũy thừa của một số hữu tỉ Hướng dẫn cách tính lũy thừa với số mũ tự nhiên, tính tích và thương của hai lũy thừa cùng cơ số. Bài 7: Tỉ lệ thức Đề cập đến việc thay tỉ số giữa các số hữu tỉ bằng tỉ số giữa các số nguyên, lập tỉ lệ thức từ các tỉ số cho trước. Bài 8: Tính chất của dãy tỉ số bằng nhau Trình bày cách tìm hai số biết tổng (hoặc hiệu) và tỉ số của chúng, chia một số thành các phần tỉ lệ với các số cho trước. Bài 9: Số thập phân hữu hạn, số thập phân vô hạn tuần hoàn Nhận biết và viết số thập phân dưới dạng số hữu hạn hoặc vô hạn tuần hoàn, viết số thập phân dưới dạng phân số tối giản. Bài 10: Làm tròn số Hướng dẫn cách làm tròn các số theo yêu cầu, áp dụng quy ước làm tròn số để ước lượng kết quả các phép tính. Bài 11: Số vô tỉ, khái niệm về căn bậc hai Tìm căn bậc hai của một số, liên kết giữa lũy thừa bậc hai và căn bậc hai. Bài 12: Số thực Cung cấp câu hỏi và bài tập về định nghĩa các tập hợp số, so sánh số thực và tìm giá trị của biểu thức. Ôn tập chương 1 Để tổng kết và ôn tập lại kiến thức đã học trong chương này.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề hình hộp chữ nhật và hình lập phương Toán 7
Tài liệu gồm 27 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề hình hộp chữ nhật và hình lập phương trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Một số yếu tố cơ bản, diện tích xung quanh, diện tích toàn phần của hình hộp chữ nhật và hình lập phương. + Nhận dạng hình, xác định được các yếu tố liên quan của hình hộp chữ nhật và hình lập phương. + Viết các công thức liên quan (công thức tính diện tích xung quanh và diện tích toàn phần của hình hộp chữ nhật và hình lập phương). + Thay số, tính và kết luận. Dạng 2. Thể tích của hình hộp chữ nhật và hình lập phương. + Áp dụng các công thức tính thể tích của hình hộp chữ nhật và hình lập phương. + Áp dụng giải các bài toán thực tế có liên quan. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác Toán 7
Tài liệu gồm 63 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề sự đồng quy của ba đường trung trực, ba đường cao trong một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. BA ĐƯỜNG TRUNG TRỰC Dạng 1. Xác định tâm đường tròn ngoại tiếp tam giác. – Dựa vào định nghĩa và sự đồng quy của ba đường trung trực trong tam giác. – Sử dụng tính chất giao điểm các đường trung trực trong tam giác thì cách đều ba đỉnh của tam giác đó. Dạng 2. Chứng minh ba đường thẳng đồng quy, ba điểm thẳng hàng. – Dựa vào định lí, tính chất về đường trung trực và sự đồng quy của ba đường trung trực trong tam giác. Dạng 3. Vận dụng tính chất ba đường trung trực trong tam giác để giải quyết các bài toán khác. – Dựa vào tính chất về đường trung trực và sự đồng quy của ba đường trung trực trong tam giác. BA ĐƯỜNG CAO Dạng 1. Xác định trực tâm của một tam giác. – Để xác định trực tâm của một tam giác, ta cần tìm giao điểm hai đường cao của tam giác đó. – Dựa vào định nghĩa, định lí và nhận xét, tính chất về đường cao và sự đồng quy của ba đường cao trong tam giác. Dạng 2. Sử dụng tính chất trực tâm của tam giác để chứng minh hai đường thẳng vuông góc, ba đường thẳng đồng quy. – Nếu H là giao điểm hai đường cao kẻ từ B và C của tam giác ABC thì AH ⊥ BC. – Nếu ba đường thẳng là ba đường cao của một tam giác thì chúng cùng đi qua một điểm. Dạng 3. Vận dụng tính chất ba đường cao trong tam giác để giải quyết các bài toán khác. – Dựa vào định lí, tính chất về sự đồng quy của ba đường cao trong tam giác. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác Toán 7
Tài liệu gồm 56 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề sự đồng quy của ba trung tuyến, ba đường phân giác trong một tam giác trong chương trình môn Toán 7. CHUYÊN ĐỀ 1 . SỰ ĐỒNG QUY CỦA BA ĐƯỜNG TRUNG TUYẾN TRONG MỘT TAM GIÁC. PHẦN I. TÓM TẮT LÍ THUYẾT. PHẦN II. CÁC DẠNG BÀI. Dạng 1. Sử dụng tính chất trọng tâm của tam giác. – Sử dụng linh hoạt các tỉ số liên quan đến trọng tâm tam giác. Dạng 2. Chứng minh một điểm là trọng tâm của tam giác. – Để chứng minh một điểm là trọng tâm của tam giác, ta có thể dùng một trong hai cách sau: + Chứng minh điểm đó là giao điểm của hai đường trung tuyến trong tam giác. + Chứng minh điểm đó thuộc một đường trung tuyến của tam giác và thỏa mãn một trong các tỉ lệ về tính chất trọng tâm của tam giác. Dạng 3. Vấn đề đường trung tuyến trong tam giác vuông, tam giác cân, tam giác đều. – Chú ý những tính chất của tam giác vuông, tam giác cân, tam giác đều. PHẦN III. BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 . SỰ ĐỒNG QUY CỦA BA ĐƯỜNG PHÂN GIÁC TRONG MỘT TAM GIÁC. PHẦN I. TÓM TẮT LÍ THUYẾT. PHẦN II. CÁC DẠNG BÀI. Dạng 1. Chứng minh đoạn thẳng bằng nhau, góc bằng nhau, tính độ dài đoạn thẳng, số đo góc. – Sử dụng các tính chất: + Giao điểm của hai đường phân giác của hai góc trong tam giác nằm trên đường phân giác của góc thứ ba. + Giao điểm của các đường phân giác của một tam giác cách đều ba cạnh của tam giác. + Tổng ba góc trong một tam giác bằng 180 độ. Dạng 2. Chứng minh ba đường đồng quy, ba điểm thẳng hàng. – Sử dụng các tính chất: + Giao điểm của hai đường phân giác của hai góc trong tam giác nằm trên đường phân giác của góc thứ ba. + Giao điểm của các đường phân giác của một tam giác cách đều ba cạnh của tam giác. Dạng 3. Đường phân giác đối với tam giác đặc biệt (tam giác cân, tam giác đều). – Sử dụng tính chất: trong tam giác cân, đường phân giác của góc ở đỉnh cũng đồng thời là đường trung tuyến, đường cao. Dạng 4. Chứng minh mối quan hệ giữa các góc. – Vận dụng các tính chất tia phân giác của một góc để tìm mối liên hệ giữa các góc. – Dùng định lí tổng ba góc trong một tam giác bằng 180 độ. PHẦN III. BÀI TẬP TỰ LUYỆN.
Chuyên đề quan hệ giữa ba cạnh của một tam giác Toán 7
Tài liệu gồm 18 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề quan hệ giữa ba cạnh của một tam giác trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Khẳng định có tồn tại hay không một tam giác biết độ dài ba cạnh. + Tồn tại một tam giác có độ dài ba cạnh là abc nếu: a b c b a c c a b hoặc b c a b c. + Trong trường hợp xác định được a là số lớn nhất trong ba số abc thì điều kiện để tồn tại tam giác chỉ cần: a b c. Dạng 2 . Chứng minh các bất đẳng thức về độ dài. Sử dụng bất đẳng thức tam giác và các biến đổi về bất đẳng thức tam giác. + Cộng cùng một số vào hai vế của bất đẳng thức: a b a c b c. + Cộng từng vế hai bất đẳng thức cùng chiều: a b a c b. PHẦN III . BÀI TẬP TỰ LUYỆN.