Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề số hữu tỉ số thực

Nội dung Phương pháp giải các dạng toán chuyên đề số hữu tỉ số thực Bản PDF - Nội dung bài viết Phương pháp giải các dạng toán chuyên đề số hữu tỉ - số thựcBài 1: Tập hợp các số hữu tỉBài 2: Cộng trừ số hữu tỉBài 3: Nhân, chia số hữu tỉBài 4: Giá trị tuyệt đối của số hữu tỉ, cộng, trừ, nhân, chia số thập phânBài 5 & 6: Lũy thừa của một số hữu tỉBài 7: Tỉ lệ thứcBài 8: Tính chất của dãy tỉ số bằng nhauBài 9: Số thập phân hữu hạn, số thập phân vô hạn tuần hoànBài 10: Làm tròn sốBài 11: Số vô tỉ, khái niệm về căn bậc haiBài 12: Số thựcÔn tập chương 1 Phương pháp giải các dạng toán chuyên đề số hữu tỉ - số thực Tài liệu này bao gồm 42 trang, tổng hợp lý thuyết từ sách giáo khoa và cung cấp phương pháp giải các dạng toán chuyên đề về số hữu tỉ và số thực trong chương trình Đại số 7. Nội dung tài liệu bao gồm các phần sau: Bài 1: Tập hợp các số hữu tỉ Trình bày cách sử dụng các kí hiệu, biểu diễn số hữu tỉ và so sánh các số hữu tỉ. Bài 2: Cộng trừ số hữu tỉ Hướng dẫn cách cộng trừ hai số hữu tỉ, viết số hữu tỉ dưới dạng tổng hoặc hiệu, cũng như tính tổng hoặc hiệu của nhiều số hữu tỉ. Bài 3: Nhân, chia số hữu tỉ Phân tích cách nhân, chia hai số hữu tỉ, viết một số hữu tỉ dưới dạng tích hoặc thương của hai số hữu tỉ. Bài 4: Giá trị tuyệt đối của số hữu tỉ, cộng, trừ, nhân, chia số thập phân Bàn về việc tính giá trị tuyệt đối của một số hữu tỉ, cũng như các phép tính cộng, trừ, nhân, chia các số thập phân. Bài 5 & 6: Lũy thừa của một số hữu tỉ Hướng dẫn cách tính lũy thừa với số mũ tự nhiên, tính tích và thương của hai lũy thừa cùng cơ số. Bài 7: Tỉ lệ thức Đề cập đến việc thay tỉ số giữa các số hữu tỉ bằng tỉ số giữa các số nguyên, lập tỉ lệ thức từ các tỉ số cho trước. Bài 8: Tính chất của dãy tỉ số bằng nhau Trình bày cách tìm hai số biết tổng (hoặc hiệu) và tỉ số của chúng, chia một số thành các phần tỉ lệ với các số cho trước. Bài 9: Số thập phân hữu hạn, số thập phân vô hạn tuần hoàn Nhận biết và viết số thập phân dưới dạng số hữu hạn hoặc vô hạn tuần hoàn, viết số thập phân dưới dạng phân số tối giản. Bài 10: Làm tròn số Hướng dẫn cách làm tròn các số theo yêu cầu, áp dụng quy ước làm tròn số để ước lượng kết quả các phép tính. Bài 11: Số vô tỉ, khái niệm về căn bậc hai Tìm căn bậc hai của một số, liên kết giữa lũy thừa bậc hai và căn bậc hai. Bài 12: Số thực Cung cấp câu hỏi và bài tập về định nghĩa các tập hợp số, so sánh số thực và tìm giá trị của biểu thức. Ôn tập chương 1 Để tổng kết và ôn tập lại kiến thức đã học trong chương này.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề số vô tỉ, căn bậc hai số học Toán 7
Tài liệu gồm 29 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề số vô tỉ, căn bậc hai số học trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Tính căn bậc hai. – Các phép toán trong tập hợp các số vô tỉ cũng có các tính chất tương tự các phép toán trong tập hợp các số hữu tỉ. – Để thực hiện phép tính có chứa căn bậc 2, ta có thể làm như sau: + Bước 1. Tính các giá trị căn bậc hai (có thể dùng định nghĩa hoặc máy tính). + Bước 2. Thực hiện đúng thứ tự phép tính. Dạng 2 . Tìm x. – Ta sử dụng các tính chất sau: + Nếu x a thì 2 x a (với a 0). + Nếu 2 x a (với a 0) thì x a hoặc x a và ngược lại. Dạng 3 . So sánh các căn bậc hai. – Sử dụng tính chất: + Với hai số dương bất kì a và b thì a b a b. + Nếu a m m b thì a b. + Nếu x y z t thì x z y t. Dạng 4 . Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức chứa căn bậc hai. – Áp dụng tính chất cơ bản sau: x 0 với mọi x 0. Dấu “=” xảy ra khi x = 0. Dạng 5 . Tìm giá trị nguyên của x để biểu thức nhận giá trị nguyên. – Tìm điều kiện của x để biểu thức nhận giá trị nguyên, ta thường làm như sau: + Bước 1. Tách phần nguyên: Tách tử theo mẫu sao cho A có dạng tổng của một số nguyên và một phân số có tử số nguyên. + Bước 2. Tìm x: Vận dụng tính chất sau: m A n với m n 0. Để A nhận giá trị nguyên thì m n hay n m. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề làm quen với số thập phân vô hạn tuần hoàn Toán 7
Tài liệu gồm 19 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề làm quen với số thập phân vô hạn tuần hoàn trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 : Nhận biết được phân số viết được dưới dạng số thập phân hữu hạn hay vô hạn tuần hoàn. – Viết phân số dưới dạng phân số tối giản với mẫu dương. – Phân tích mẫu số đó ra thừa số nguyên tố. – Nếu mẫu này không có ước nguyên tố khác 2 và 5 thì phân số viết được dưới dạng số thập phân hữu hạn. – Nếu mẫu này có ước nguyên tố khác 2 và 5 thì phân số viết được dưới dạng số thập phân vô hạn tuần hoàn. Dạng 2 : Nhận biết được số thập phân hữu hạn và số thập phân vô hạn tuần hoàn, xác định được chu kì của một số thập phân vô hạn tuần hoàn. Viết phân số dưới dạng số thập phân và ngược lại. – Căn cứ vào khái niệm để nhận biết số thập phân hữu hạn hay vô hạn tuần hoàn. – Xét các chữ số sau dấu phẩy để xác định chu kỳ nếu là số thập phân vô hạn tuần hoàn. – Viết phân số dưới dạng số thập phân (thực hiện phép chia lấy tử chia cho mẫu, có thể sử dụng máy tính cầm tay để hỗ trợ). – Viết số thập phân dưới dạng phân số: + Viết dưới dạng phân số thập phân rối rút gọn đến tối giản nếu là số thập phân hữu hạn. + Nếu số thập phân vô hạn tuần hoàn có chu kì bắt đầu ngay sau dấu phẩy thì ta lấy chu kì làm tử còn mẫu là một số gồm các chữ số 9 với số chữ số 9 bằng số chữ số của chu kì. + Nếu số thập phân vô hạn tuần hoàn có chu kì không bắt đầu ngay sau dấu phẩy thì ta lấy số gồm các chữ số trước chu kì và chu kì trừ đi số gồm các chữ số trước chu kì là tử, còn mẫu là một số gồm các chữ số 9 kèm theo các chữ số 0, số chữ số 9 bằng số chữ số của chu kì, số chữ số 0 bằng số chữ số trước chu kì. Dạng 3 : Làm tròn số thập phân. – Áp dụng quy ước làm tròn số và độ chính xác cho trước. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề lũy thừa của một số hữu tỉ Toán 7
Tài liệu gồm 29 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề lũy thừa của một số hữu tỉ trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÝ THUYẾT. 1. Định nghĩa lũy thừa với số mũ tự nhiên. 2. Tích và thương của hai lũy thừa cùng cơ số. 3. Lũy thừa của lũy thừa. 4. Lũy thừa của một tích, thương. 5. Lũy thừa với số mũ nguyên âm. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép tính về lũy thừa. Vận dụng định nghĩa và quy tắc phép tính ở trên để giải. Dạng 2 . Tìm thành phần chưa biết. 1. Để tìm số hữu tỉ x trong cơ số của một lũy thừa, ta thường biến đổi hai vế của đẳng thức về lũy thừa cùng số mũ, rồi sử dụng nhận xét. 2. Để tìm số x ở số mũ của lũy thừa, ta thường biến đổi hai vế của đẳng thức về lũy thừa cùng cơ số, rồi sử dụng nhận xét. Dạng 3 . So sánh hai lũy thừa. Để so sánh hai lũy thừa ta có thể biến đổi đưa hai lũy thừa về cùng cơ số hoặc đưa hai lũy thừa về cùng số mũ, rồi sử dụng nhận xét. PHẦN III . BÀI TẬP TỰ LUYỆN.
Chuyên đề cộng, trừ, nhân, chia số hữu tỉ Toán 7
Tài liệu gồm 81 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề cộng, trừ, nhân, chia số hữu tỉ trong chương trình môn Toán 7. A. CỘNG, TRỪ SỐ HỮU TỈ PHẦN I. TÓM TẮT LÍ THUYẾT. PHẦN II. CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép tính. + Đưa hai số hữu tỉ về hai phân số cùng mẫu rồi thực hiện cộng (trừ) các tử số. Sau đó rút gọn kết quả (nếu có). + Vận dụng tính chất giao hoán, kết hợp, quy tắc dấu ngoặc để tính nhanh. Dạng 2 . Tìm x. + Thực hiện phá ngoặc theo thứ tự thực hiện phép tính để đưa đẳng thức về các dạng: a x b x b a. Dạng 3 . Bài toán thực tế. Để giải một bài toán thực tế liên quan đến cộng, trừ số hữu tỉ, ta thường làm như sau: + Bước 1: Phân tích bài toán, từ các dữ kiện đề bài xác định các giá trị của cùng một đại lượng (ví dụ: các giá trị của một đoạn đường, một chiếc bánh, một quyển sách, một đơn vị thời gian …) và thiết lập mối quan hệ giữa các đại lượng trong bài toán. + Bước 2: Dựa vào quy tắc cộng, trừ số hữu tỉ, thực hiện các phép toán tương ứng. + Bước 3: Kết luận. PHẦN III. BÀI TẬP TỰ LUYỆN. B. NHÂN, CHIA SỐ HỮU TỈ PHẦN I. TÓM TẮT LÍ THUYẾT. PHẦN II. CÁC DẠNG BÀI. Dạng 1 . Thực hiện phép tính. Để nhân chia hai số hữu tỉ ta thực hiện các bước sau: + Bước 1: Viết hai số hữu tỉ dưới dạng phân số. + Bước 2: Áp dụng quy tắc nhân, chia phân số. + Bước 3: Rút gọn kết quả (nếu có thể). Dạng 2 . Tìm x. + Thực hiện phá ngoặc theo thứ tự thực hiện phép tính để đưa đẳng thức về các dạng: a x b x b a. Dạng 3 . Bài toán thực tế. Để giải một bài toán thực tế liên quan đến nhân, chia số hữu tỉ, ta thường làm như sau: + Bước 1: Phân tích bài toán, từ các dữ kiện đề bài xác định các giá trị của cùng một đại lượng (ví dụ: các giá trị của một đoạn đường, một chiếc bánh, một quyển sách, một đơn vị thời gian …) và thiết lập mối quan hệ giữa các đại lượng trong bài toán. + Bước 2: Dựa vào quy tắc nhân, chia số hữu tỉ, thực hiện các phép toán tương ứng. + Bước 3: Kết luận. PHẦN III. BÀI TẬP TỰ LUYỆN.