Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh lớp 12 môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thừa Thiên Huế

Nội dung Đề thi học sinh giỏi tỉnh lớp 12 môn Toán (chuyên) năm 2022 2023 sở GD ĐT Thừa Thiên Huế Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế. Trích dẫn Đề thi học sinh giỏi tỉnh Toán lớp 12 (chuyên) năm 2022 – 2023 sở GD&ĐT Thừa Thiên Huế : + Tìm tất cả các cặp số nguyên dương (x;y) sao cho x4 + 10×2 + 2y là một số chính phương. + Trên đường tròn (O) cho dây cung BC cố định không đi qua O và điểm A thay đổi sao cho A khác B, A khác C. Gọi D, E, F lần lượt là trung điểm của các đoạn thẳng BC, CA, AB. Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M. Gọi (Q) là đường tròn đi qua hai điểm D, M và tiếp xúc với đường tròn (O); d là tiếp tuyến của (Q) tại D. Gọi N, P lần lượt là giao điểm của d với các đường trung trực của DE và DF. Gọi H là giao điểm của NE và PF, G là trọng tâm của tam giác ABC. a) Chứng minh đường tròn (Q) tiếp xúc với đường tròn ngoại tiếp của tam giác DEF. b) Chứng minh khi A thay đổi trên (O) thì đường thẳng GH luôn đi qua một điểm cố định. + Cho n là một số nguyên dương. Một bảng n x n gồm n2 ô vuông đơn vị, mỗi ô được tô bởi một trong hai màu trắng hoặc đen, được gọi là bảng lồi nếu với mỗi ô được tô màu đen thì ô liền kề nằm bên trái nó hoặc bên trên nó (nếu có) đều được tô màu đen. Với a, b là hai ô vuông đơn vị bất kì của bảng, cặp gồm hai ô vuông (a;b) gọi là cặp đẹp nếu a được tô màu đen, b được tô màu trắng và cả hai đều nằm trên cùng một hàng hoặc cùng một cột của bảng. a) Với n = 3, hãy chỉ ra bảng lồi 3 × 3 gồm 6 ô đen và có số cặp đẹp lớn nhất. b) Tìm số cặp đẹp lớn nhất có thể của một bảng lồi n x n.

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GDĐT Kiên Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Kiên Giang; kỳ thi được diễn ra vào ngày 30/08/2023 và 31/08/2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Kiên Giang : + Cho tam giác nhọn ABC (với AB < AC) nội tiếp đường tròn (O), có I là tâm đường tròn nội tiếp. Đường tròn bàng tiếp góc A của tam giác ABC có tâm là J và tiếp xúc với đường thẳng BC tại điểm D. Gọi E, F theo thứ tự là trung điểm của ID, JD. Đường tròn có đường kính là AF cắt đường tròn (O) tại điểm thứ hai G khác A. Chứng minh rằng: IDB = AGE. + Cho số nguyên dương n và một bảng ô vuông (2n + 1) × (2n + 1). Tìm số nguyên dương k lớn nhất sao cho: có thể đặt k viên bi vào k ô của bảng đã cho, mỗi ô không quá 1 viên bi và đồng thời trong mỗi bảng con 2 × 2 của bảng ô vuông đã cho luôn có không quá 2 viên bi. + Cho tam giác nhọn ABC (với AB < AC) nội tiếp đường tròn (O) và có trực tâm là H. Gọi M là điểm chính giữa cung BAC của đường tròn (O). Đường thẳng qua O song song với AM cắt HM tại K. Gọi E, F tương ứng là hình chiếu vuông góc của K trên AC, AB. Gọi N là trung điểm HM. Chứng minh rằng: a) B, C, O, K cùng nằm trên một đường tròn. b) K, E, N, F là các đỉnh của một hình bình hành.
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Thái Nguyên
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thái Nguyên. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Thái Nguyên : + Có 30 tấm thẻ được đánh số lần lượt từ 1 đến 30. Chọn ngẫu nhiên hai tấm thẻ. Tính xác suất để tích của hai số được đánh trên hai tấm thẻ chọn ra là một số chia hết cho 4. + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy và góc giữa mặt phẳng (SBC) và mặt phẳng đáy bằng 60°. a. Tính thể tích khối chóp S.ABC. b. Tính côsin của góc tạo bởi đường thẳng AB và mặt phẳng (SBC). + Chứng minh rằng tồn tại số nguyên dương m sao cho với mọi số nguyên x, y thì 3×2 + 5xy + y2 – m không chia hết cho 13.
Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 - 2024 sở GDĐT Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Phước; kỳ thi được diễn ra vào ngày 04 tháng 11 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 12 năm 2023 – 2024 sở GD&ĐT Bình Phước : + Gọi S là tập hợp các số tự nhiên có 5 chữ số đôi một khác nhau và các chữ số này được lấy từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9. Chọn ngẫu nhiên một số từ tập S, tính xác suất để số được chọn là số chẵn trong đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau. + Cho hình chóp tứ giác đều S.ABCD có O là giao điểm của AC và BD. Biết SO a 2 góc giữa đường thẳng SA và mặt phẳng (ABCD) bằng 0 45. a) Tính thể tích khối chóp S.ABCD theo a. b) Gọi K là điểm di động trong mặt phẳng (ABCD). Tìm SAK để biểu thức SA AK T SK đạt giá trị lớn nhất. + Cho hình trụ có đường kính đáy bằng 4 5. Một mặt phẳng không vuông góc với đáy và cắt hai đáy theo hai dây cung song song MN M N thoả mãn MN M N 8 4. Biết rằng tứ giác MNN M có diện tích bằng 54. Tính thể tích khối trụ đã cho.
Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023 - 2024 sở GDĐT Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 GDTX cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào thứ Tư ngày 25 tháng 10 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 12 GDTX cấp tỉnh năm 2023 – 2024 sở GD&ĐT Hải Dương : + Lấy ngẫu nhiên 3 viên bi từ một hộp có 3 viên bi vàng, 4 viên bi đỏ, 5 viên bi xanh, 6 viên bi trắng. Tính xác suất để 3 viên bi lấy ra có ít nhất 2 màu. Trong mặt phẳng toạ độ Oxy cho điểm A(1;3). Viết phương trình đường tròn tâm A và đi qua B(-1;4). + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B; mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Biết AB a BC a 3. a) Tính thể tích khối chóp S.ABC theo a. b) Gọi M là trung điểm AC. Tính khoảng cách từ M đến mặt phẳng (SBC). + Một người đàn ông muốn xây bể bơi cho trẻ em có thể tích 3 18m và thiết kế bể là hình hộp chữ nhật có chiều dài gấp ba lần chiều rộng. Tính độ sâu của bể để diện tích gạch lát đáy và thành bể nhỏ nhất.