Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử lớp 9 môn Toán năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4)

Nội dung Đề thi thử lớp 9 môn Toán năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) Bản PDF - Nội dung bài viết Đề thi thử lớp 9 môn Toán năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) Đề thi thử lớp 9 môn Toán năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) Đề thi thử Toán lớp 9 năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4) bao gồm 1 trang với 4 bài toán dạng tự luận. Học sinh có thời gian làm bài trong 150 phút. Kỳ thi này được tổ chức nhằm giúp học sinh ôn tập và chuẩn bị cho kỳ thi Toán tuyển sinh vào lớp 10 THPT chuyên năm học 2019 – 2020. Trích dẫn một số câu hỏi từ đề thi thử Toán lớp 9 năm 2019 trường THPT chuyên KHTN – Hà Nội (Vòng 2 – Đợt 4): Với a, b, c là các số thực dương thỏa mãn ab + bc + ca = 1. Hãy tìm giá trị lớn nhất của biểu thức P = a/(1 + a^2) + b/(1 + b^2) – c/(1 + c^2). Đề cho tam giác ABC nhọn nội tiếp trong đường tròn (O). Tiếp tuyến qua B, C của (O) cắt nhau tại T. Đường thẳng qua T song song với OA cắt trung trực CA, AB lần lượt tại các điểm E, F. Câu hỏi đặt ra bao gồm việc chứng minh hai tam giác OEF và ABC đồng dạng, chứng minh rằng DJ || BC với J là tâm đường tròn ngoại tiếp tam giác OEF, và chứng minh rằng AT chia đôi đoạn thẳng OK với K là trực tâm tam giác OEF. Với x > 1, chứng minh rằng từ tập con A có n + 2 số của tập {1, 2, 3 ... 3n} luôn có thể chọn ra 2 số mà hiệu của chúng lớn hơn n và nhỏ hơn 2n. Đề thi thử này không chỉ giúp học sinh quen với cấu trúc và dạng bài trong kỳ thi sắp tới, mà còn giúp họ rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và phản xạ nhanh nhạy trong việc giải các bài toán phức tạp.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra kiến thức Toán 9 đợt 1 năm 2021 trường chuyên KHTN - Hà Nội (Vòng 2)
Đề kiểm tra kiến thức Toán 9 đợt 1 năm 2021 trường chuyên KHTN – Hà Nội (Vòng 2) gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2021.
Đề khảo sát Toán 9 năm 2020 - 2021 trường Hoàng Hoa Thám - Hà Nội
Đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề khảo sát Toán 9 lần 3 năm 2020 - 2021 trường THCS Tam Hồng - Vĩnh Phúc
Đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc : + Cho đường tròn (O, 3cm) và đường tròn (O’, 4cm). Biết độ dài đoạn nối tâm OO’ = 6cm. Khẳng định nào sau đây đúng? A. Hai đường tròn (O) và (O’) tiếp xúc nhau. B. Hai đường tròn (O) và (O’) cắt nhau. C. Hai đường tròn (O) và (O’) ở ngoài nhau. D. Đường tròn (O’) đựng đường tròn (O). + Cho hai đường tròn (O), (O’) tiếp xúc ngoài tại A. Gọi AB là đường kính của đường tròn (O), AC là đường kính của đường tròn (O’), DE là tiếp tuyến chung của hai đường tròn. K là giao điểm của BD và CE. a) Tính số đo DAE. b) Tứ giác ADKE là hình gì? Vì sao? c) Chứng minh AK là tiếp tuyến chung của 2 đường tròn (O) và (O’). d) Gọi M là trung điểm của BC. Chứng minh MK DE. + Cho hàm số bậc nhất: y = (m – 1)x + 1 (m là tham số). a) Tìm m để hàm số nghịch biến trên R. b) Vẽ đồ thị hàm số khi m = -1. c) Tìm m để đồ thị của hàm số đã cho cắt đường thẳng y = x -3 tại điểm có hoành độ bằng -2.
Đề khảo sát Toán 9 lần 2 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Một máy bay cất cánh theo phương có góc nghiêng là 23°. Hỏi muốn đạt độ cao là 2500m, máy bay phải bay một đoạn đường là bao nhiêu mét? (làm tròn đến mét). + Cho tam giác đều ABC nội tiếp đường tròn tâm O. Trên cạnh BC lấy điểm N, gọi E và F theo thứ tự là hình chiếu của N lên AB, AC. Gọi D là trung điểm của ВC. a) Chứng minh rằng bốn điểm A, E, N, F cùng thuộc một đường tròn. Xác định tâm I của đường tròn đó. b) Chứng minh rằng BN.BD = BE.BA. c) Chứng minh rằng ED = FD. d) Gọi H là giao điểm của hai đường chéo của tứ giác EIFD. Chứng minh O, H, N thẳng hàng. + Cho xy + yz + zx = 1. Tìm giá trị nhỏ nhất của P = 3(x2 + y2) + z2.