Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập phương trình đường thẳng nâng cao

Tài liệu gồm 62 trang tuyển chọn 86 câu hỏi và bài tập trắc nghiệm nâng cao (vận dụng cao) chủ đề phương trình đường thẳng trong không gian Oxyz, có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian. Trích dẫn tài liệu bài tập phương trình đường thẳng nâng cao: + Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y + z – 4 = 0 và đường thẳng d: (x + 1)/2 = y/1 = (z + 2)/3. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d. + Trong không gian Oxyz, cho tam giác ABC với A(3;0;0), B(0;6;0), C(0;0;6). Phương trình nào dưới đây là phương trình đường thẳng đi qua trực tâm của tam giác ABC và vuông góc với mặt phẳng (ABC). [ads] + Cho hai mặt cầu (S1): (x – 3)^2 + (y – 2)^2 + (z – 2)^2 = 4, (S2): (x – 1)^2 + y^2 + (z – 1)^2 = 1. Gọi d là đường thẳng đồng thời tiếp xúc với hai mặt cầu trên, cắt đoạn thẳng nối tâm hai mặt cầu và cách gốc tọa độ O một khoảng lớn nhất. Nếu u(a;1;b) là một vectơ chỉ phương của d thì tổng S = 2a + 3b bằng bao nhiêu? + Trong không gian với hệ tọa độ Oxyz cho ba điểm A(2;-1;1), M(5;3;1), N(4;1;2) và mặt phẳng (P): y + z = 27. Biết rằng tồn tại điểm B trên tia AM, điểm C trên (P) và điểm D trên tia AN sao cho tứ giác ABCD là hình thoi. Tọa độ điểm C là? + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua gốc tọa độ O và điểm I(0;1;1). Gọi S là tập hợp các điểm nằm trên mặt phẳng (Oxy), cách đường thẳng d một khoảng bằng 6. Tính diện tích hình phẳng giới hạn bởi S.

Nguồn: toanmath.com

Đọc Sách

Bài tập tọa độ không gian phân theo dạng có lời giải chi tiết - Trần Sĩ Tùng
Tài liệu gồm 67 trang, tuyển chọn bài tập các dạng toán phương pháp tọa độ không gian có lời giải chi tiết. TĐKG 01: VIẾT PHƯƠNG TRÌNH MẶT PHẲNG Dạng 1: Viết phương trình mặt phẳng bằng cách xác định vectơ pháp tuyến Dạng 2: Viết phương trình mặt phẳng liên quan đến mặt cầu Dạng 3: Viết phương trình mặt phẳng liên quan đến khoảng cách Dạng 4: Viết phương trình mặt phẳng liên quan đến góc Dạng 5: Viết phương trình mặt phẳng liên quan đến tam giác Dạng 6: Các dạng khác về viết phương trình mặt phẳng TĐKG 02: VIẾT PHƯƠNG TRÌNH ĐƯỜNG THẲNG Dạng 1: Viết phương trình đường thẳng bằng cách xác định vectơ chỉ phương Dạng 2: Viết phương trình đường thẳng liên quan đến một đường thẳng khác Dạng 3: Viết phương trình đường thẳng liên quan đến hai đường thẳng khác Dạng 4: Viết phương trình đường thẳng liên quan đến khoảng cách Dạng 5: Viết phương trình đường thẳng liên quan đến góc Dạng 6: Viết phương trình đường thẳng liên quan đến tam giác [ads] TĐKG 03: VIẾT PHƯƠNG TRÌNH MẶT CẦU Dạng 1: Viết phương trình mặt cầu bằng cách xác định tâm và bán kính Dạng 2: Viết phương trình mặt cầu bằng cách xác định các hệ số của phương trình Dạng 3: Các bài toán liên quan đến mặt cầu TĐKG 04: TÌM ĐIỂM THOẢ ĐIỀU KIỆN CHO TRƯỚC Dạng 1: Xác định điểm thuộc mặt phẳng Dạng 2: Xác định điểm thuộc đường thẳng Dạng 3: Xác định điểm thuộc mặt cầu Dạng 4: Xác định điểm trong không gian Dạng 5: Xác định điểm trong đa giác