Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Triệu Sơn Thanh Hóa

Nội dung Đề học sinh giỏi lớp 8 môn Toán năm 2021 2022 phòng GD ĐT Triệu Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 8 năm 2021 – 2022 phòng GD&ĐT Triệu Sơn – Thanh Hóa Đề học sinh giỏi Toán lớp 8 năm 2021 – 2022 phòng GD&ĐT Triệu Sơn – Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến các bạn đề kiểm định chất lượng học sinh giỏi môn Toán lớp 8 năm học 2021 – 2022 do Phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa tổ chức. Kỳ thi sẽ diễn ra vào ngày 11 tháng 03 năm 2022. Dưới đây là một số câu hỏi trong đề thi: Tìm nghiệm nguyên của phương trình: \(x^2 + 2xy + 2x + 2y - 3y^2 = 4\). Cho số tự nhiên \(n > 2\) và số nguyên tố \(p\) thỏa mãn \(p - 1\) chia hết cho \(n\) đồng thời \(n^3 - 1\) chia hết cho \(p\). Chứng minh rằng \(n + p\) là một số chính phương. Cho tam giác ABC vuông tại A. Các tia phân giác của góc B và góc C cắt nhau tại I. Gọi D, E, F lần lượt là hình chiếu vuông góc của I lên BC, AB, AC. Chứng minh: Tứ giác AEIF là hình vuông và \(ID = IE = IF\). Tia AI cắt DF tại K. Chứng minh rằng tam giác AIB đồng dạng tam giác AFK. Qua A kẻ đường thẳng vuông góc với BC, đường thẳng này cắt DF tại P. Gọi M là trung điểm của AB. Tia MI cắt cạnh AC tại Q. Chứng minh tam giác APQ cân. Khi BC cố định, điểm A di chuyển nhưng vẫn thỏa mãn góc BAC = 90° và đoạn AI không đổi bằng \(a^2\). Tìm vị trí của A để chu vi tam giác AMQ nhỏ nhất. Hy vọng đây sẽ là một cơ hội tốt để các em thử sức và phát huy khả năng trong môn Toán. Chúc các em ôn tập tốt và thi đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT thị xã Giá Rai Bạc Liêu
Nội dung Đề thi HSG lớp 8 môn Toán năm 2018 2019 phòng GD ĐT thị xã Giá Rai Bạc Liêu Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT thị xã Giá Rai - Bạc Liêu Đề thi HSG Toán lớp 8 năm 2018 - 2019 phòng GD&ĐT thị xã Giá Rai - Bạc Liêu Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh đề thi HSG môn Toán lớp 8 năm 2018 - 2019 của phòng GD&ĐT thị xã Giá Rai - Bạc Liêu. Đề thi này bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm, giúp các em học sinh ôn tập và chuẩn bị tốt cho kì thi sắp tới.
Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ
Nội dung Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ Bản PDF - Nội dung bài viết Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ Tuyển tập 100 đề thi học sinh giỏi lớp 8 môn Toán Hồ Khắc Vũ Tài liệu này bao gồm 89 trang với 100 đề thi chọn lọc từ học sinh giỏi môn Toán lớp 8 đến từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Được biên soạn và tổng hợp bởi thầy Hồ Khắc Vũ, tài liệu này sẽ giúp các em học sinh chuẩn bị tốt hơn cho kì thi học sinh giỏi.
Đề thi học sinh giỏi lớp 8 môn Toán trường THCS Bãi Sậy Hưng Yên
Nội dung Đề thi học sinh giỏi lớp 8 môn Toán trường THCS Bãi Sậy Hưng Yên Bản PDF - Nội dung bài viết Đề thi học sinh giỏi môn Toán lớp 8 trường THCS Bãi Sậy - Hưng Yên Đề thi học sinh giỏi môn Toán lớp 8 trường THCS Bãi Sậy - Hưng Yên Đề thi học sinh giỏi môn Toán lớp 8 trường THCS Bãi Sậy - Hưng Yên được thiết kế với 6 bài toán tự luận, dành cho học sinh có kiến thức và kỹ năng Toán cao cấp. Thời gian làm bài được giới hạn trong 60 phút để thử thách sự nhanh nhạy và chính xác của thí sinh. Bài toán đầu tiên yêu cầu học sinh chứng minh Tứ giác AMDN là hình gì và vị trí của điểm D trên cạnh BC để đạt được độ dài MN nhỏ nhất, cùng tính số đo góc MHN trong tam giác ABC. Bài toán thứ hai yêu cầu học sinh chứng minh rằng biểu thức (x - 1)(2x^2 + x + 1) - (x - 2)(2x^2 + 3x + 6) không phụ thuộc vào các biến, làm quen với phép toán đơn giản nhưng logic và chính xác. Bài toán thứ ba đưa ra bài toán tìm giá trị của x và y sao cho 9xy + 3x + 3y = 51, kích thích khả năng suy luận và giải quyết vấn đề của học sinh. Trong bài toán cuối cùng, học sinh sẽ phải tìm giá trị nhỏ nhất của đa thức N = x^2 + 5y^2 - 4xy + 6x - 14y + 15, yêu cầu kết hợp nhiều phép toán và kiến thức Toán học để giải quyết bài toán phức tạp. Đề thi này không chỉ đánh giá kiến thức mà còn khích lệ học sinh phát huy sự sáng tạo, logic và khả năng giải quyết vấn đề, từ đó phát triển tư duy Toán học toàn diện. Đồng thời, cũng giúp học sinh thấy được mục tiêu mà họ cần hướng đến và cần cố gắng nỗ lực hơn trong học tập.
Đề thi học sinh giỏi lớp 8 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu
Nội dung Đề thi học sinh giỏi lớp 8 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu Đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu. Kỳ thi đã diễn ra vào ngày 09 tháng 04 năm 2017. Trích dẫn đề thi học sinh giỏi Toán lớp 8 cấp tỉnh năm 2016-2017 sở GD&ĐT Lai Châu: Cho hình vuông EFGH. Từ E, vẽ góc vuông xEy sao cho cạnh Ex cắt các đường thẳng FG và GH theo thứ tự ở M và N, còn cạnh Ey cắt hai đường thẳng trên lần lượt ở P và Q. a) Chứng minh rằng các tam giác EMQ và ENP là các tam giác vuông cân. b) Đường thẳng QM cắt NP ở R. Gọi I và K theo thứ tự là trung điểm của PN và QM. Tứ giác EKRI là hình gì? Vì sao? c) Chứng minh bốn điểm F, H, K, I thẳng hàng. Cho biểu thức a) Rút gọn A; b) Tìm giá trị nguyên của x để A có giá trị nguyên. Cho ba số a, b, c thỏa mãn điều kiện abc = 2017. Tính giá trị của biểu thức: P = 2^(ab) * 3^(ac) * 5^(bc) * 9^(abc).