Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 năm 2023 2024 trường THCS Lê Thị Hồng Gấm Đà Nẵng

Nội dung Đề thi thử Toán vào 10 năm 2023 2024 trường THCS Lê Thị Hồng Gấm Đà Nẵng Bản PDF - Nội dung bài viết Đề thi thử Toán vào 10 năm 2023-2024 Trường THCS Lê Thị Hồng Gấm Đà Nẵng Đề thi thử Toán vào 10 năm 2023-2024 Trường THCS Lê Thị Hồng Gấm Đà Nẵng Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh lớp 9 bộ đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2023-2024 của trường THCS Lê Thị Hồng Gấm, Đà Nẵng. Đề thi diễn ra vào ngày 13 tháng 05 năm 2023, với những câu hỏi chất lượng, phù hợp với chương trình học của lớp 9. Một số câu hỏi trong đề thi bao gồm: 1. Cho hai hàm số y=x và y=x^2+3. Hãy vẽ đồ thị của hai hàm số này trên cùng một hệ trục tọa độ Oxy. Tìm điểm C thuộc trục Oy sao cho diện tích tam giác ABC bằng 8 cm². 2. Hai đội thủy lợi A và B đào mương. Nếu mỗi đội làm một mình, tổng thời gian hai đội phải làm là 25 ngày, trong đó đội A nhanh hơn đội B. Nếu hai đội cùng làm, công việc hoàn thành trong 6 ngày. Tính thời gian để mỗi đội làm một mình xong công việc. 3. Cho đường tròn (O; R) và dây cung BC không qua O. Chứng minh tứ giác BCEF là tứ giác nội tiếp. Tính BK, AG, BG theo bán kính R của đường tròn. Chứng minh đường tròn ngoại tiếp tam giác HMI đi qua một điểm cố định khi A thay đổi trên cung BC. Đề thi thử Toán vào 10 năm 2023-2024 của trường THCS Lê Thị Hồng Gấm Đà Nẵng không chỉ giúp học sinh ôn tập kiến thức mà còn giúp họ thử sức và chuẩn bị tốt nhất cho kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Lạc Thủy - Hòa Bình (Ban A)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT Lạc Thủy – Hòa Bình (Ban A) gồm 25 bài toán theo hình thức điền kết quả.
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Toán)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Toán) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho parabol 2 (P): y = x^2, đường thẳng (d) có hệ số góc k và đi qua điểm M(0;1). Chứng minh rằng với mọi giá trị của k, (d) luôn cắt (P) tại hai điểm phân biệt A và B có hoành độ x1, x2 thỏa điều kiện /x1 – x2/ >= 2. [ads] + Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB. a) Chứng minh tứ giác MAIB nội tiếp. b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct. c) Chứng minh MD/MC = HA^2/HC^2
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Tin)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho parabol 2 (P): y = 2x^2 và đường thẳng (d): y = ax + b. a) Tìm điều kiện của b sao cho với mọi số thực a, parabol (P) luôn cắt đường thẳng (d) tại hai điểm phân biệt. b) Gọi A là giao điểm của (P) và (d) có hoành độ bằng 1, B là giao điểm của (d) và trục tung. [ads] Biết rằng tam giác OAB có diện tích bằng 2, tìm a và b. + Tìm tất cả các số nguyên x, y, z không âm thỏa mãn xyz + xy  + yz + zx + x + y + z = 2017. + Bên trong hình vuông cạnh bằng 1, lấy 9 điểm phân biệt tùy ý sao cho không có bất kỳ 3 điểm nào trong chúng thẳng hàng. Chứng minh rằng tồn tại 3 điểm trong số đó tạo thành một tam giác có diện tích không vượt quá 1/8.
Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 - 2018 môn Toán sở GD và ĐT Bến Tre
Đề thi tuyển sinh lớp 10 THPT công lập năm học 2017 – 2018 môn Toán sở GD và ĐT Bến Tre gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho phương trình x^2 – 2(m – 1)x – (2m + 1) = 0 (1) (m là tham số) a) Giải phương trình (1) với m = 2 b) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m c) Tìm m để phương trình (1) luôn có hai nghiệm bằng nhau về giá trị tuyệt đối và trái dấu nhau [ads] + Trong mặt phẳng tọa độ Oxy cho parabol (P): y = – 2x^2 và đường thẳng (d): y = 2x – 4 a) Vẽ đồ thị của (P) và (d) trên cùng mặt phẳng tọa độ b) Bằng phương pháp đại số, hãy tìm tọa độ giao điểm của (P) và (d)