Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lần 2 năm 2023 2024 trường THCS Anh Sơn Nghệ An

Nội dung Đề thi thử Toán vào lần 2 năm 2023 2024 trường THCS Anh Sơn Nghệ An Bản PDF - Nội dung bài viết Đề thi thử Toán vào lớp 10 THPT lần 2 năm 2023 – 2024 trường THCS Anh Sơn Nghệ An Đề thi thử Toán vào lớp 10 THPT lần 2 năm 2023 – 2024 trường THCS Anh Sơn Nghệ An Xin chào quý thầy cô giáo và các em học sinh lớp 9! Sytu xin giới thiệu đến bạn đọc đề thi thử môn Toán để vào lớp 10 THPT tại trường THCS Anh Sơn, tỉnh Nghệ An dưới đây: 1. Giải bài toán bằng cách lập phương trình hoặc lập hệ phương trình: Để chào mừng kỷ niệm 200 năm danh xưng Anh Sơn (1882 – 2022) và 60 năm ngày tách lập huyện (19/4/1963 – 19/4/2023), Ban tổ chức đã tuyển chọn 350 em học sinh gồm cả nam và nữ để tham gia màn đồng diễn. Tuy nhiên sau khi cân đối đội hình, ban tổ chức quyết định tuyển chọn thêm 52 học sinh nữa. Số học sinh nam tăng 20%, số học sinh nữ tăng 10% so với lúc đầu. Hỏi lúc đầu có bao nhiêu học sinh nam và bao nhiêu học sinh nữ được tuyển chọn? 2. Bác An muốn làm một thùng đựng lúa có nắp đậy bằng tôn dạng hình trụ có kích thước như trên hình vẽ. Biết mỗi mét vuông tôn có giá là 200,000 đồng. Hỏi bác An cần trả số tiền bao nhiêu để mua tôn? (Biết sự hao hụt tôn ở các mối nối là không đáng kể). 3. Cho tam giác ABC nhọn, AB < AC. Đường tròn tâm O đường kính BC cắt các cạnh AB, AC theo thứ tự tại F và E. BE và CF cắt nhau tại H. a) Chứng minh tứ giác AEHF nội tiếp. b) Tia AH cắt EF và BC theo thứ tự tại I và K. Chứng minh AL.HK = FI.EK. c) Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M, N là các tiếp điểm). Chứng minh ba điểm M, H, N thẳng hàng. Hy vọng đề thi thử Toán này sẽ giúp các em học sinh lớp 9 chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em thành công! Đừng quên rèn luyện kiến thức và ôn tập thật kỹ nhé!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (không chuyên) năm 2021 2022 sở GD ĐT Tây Ninh
Nội dung Đề tuyển sinh môn Toán (không chuyên) năm 2021 2022 sở GD ĐT Tây Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (không chuyên) năm 2021 - 2022 sở GD&ĐT Tây Ninh Đề tuyển sinh môn Toán (không chuyên) năm 2021 - 2022 sở GD&ĐT Tây Ninh Chào đón quý thầy cô và các em học sinh, Sytu xin giới thiệu đến bạn đề tuyển sinh lớp 10 môn Toán (không chuyên) năm 2021 - 2022 của sở GD&ĐT Tây Ninh. Kỳ thi sẽ diễn ra vào thứ Hai ngày 07 tháng 06 năm 2021, với đề thi đầy đủ đáp án và lời giải chi tiết. Trích dẫn một số câu hỏi trong đề: 1. Một đoàn khách du lịch gồm 40 người dự định tham quan đỉnh núi Bà Đen bằng cáp treo khứ hồi. Tuy nhiên, có 5 bạn trẻ muốn khám phá bằng đường bộ khi leo lên và lúc xuống sẽ đi cáp treo để trải nghiệm, nên chỉ mua vé lượt xuống. Do đó, đoàn đã chi ra 9.450.000 đồng để mua vé. Hỏi giá cáp treo khứ hồi và giá vé 1 lượt là bao nhiêu? Biết rằng giá vé lượt xuống rẻ hơn giá vé khứ hồi là 110.000 đồng. 2. Cho ∆ABC vuông tại A nội tiếp đường tròn (O). Gọi D, E, F lần lượt là các tiếp điểm của O với các cạnh AB, AC, và BC. Đường thẳng BO cắt đường thẳng EF tại I. Hãy tính góc BIF. 3. Cho hình chữ nhật ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC và CD. Gọi E là giao điểm của BN với AM và F là giao điểm của BN với DM; DM cắt AN tại K. Chứng minh điểm A nằm trên đường tròn ngoại tiếp tam giác EFK. Hy vọng rằng đề thi sẽ giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em học tốt!
Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Quảng Trị
Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021 2022 sở GD ĐT Quảng Trị Bản PDF - Nội dung bài viết Thông tin về Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021-2022 tại sở GD&ĐT Quảng Trị Thông tin về Đề tuyển sinh chuyên môn Toán (chuyên) năm 2021-2022 tại sở GD&ĐT Quảng Trị Sytu hân hạnh giới thiệu đến quý thầy cô và các em học sinh Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm học 2021-2022 tại sở GD&ĐT Quảng Trị. Đề thi được thiết kế đặc biệt cho thí sinh muốn thi chuyên Toán, và kỳ thi sẽ diễn ra vào sáng thứ Năm ngày 03 tháng 06 năm 2021.
Đề tuyển sinh THPT chuyên môn Toán năm 2021 2022 sở GD ĐT Nghệ An
Nội dung Đề tuyển sinh THPT chuyên môn Toán năm 2021 2022 sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề tuyển sinh THPT chuyên môn Toán năm 2021-2022 sở GD&ĐT Nghệ An Đề tuyển sinh THPT chuyên môn Toán năm 2021-2022 sở GD&ĐT Nghệ An Chào mừng quý thầy, cô giáo và các em học sinh thân yêu! Sytu xin giới thiệu đến bạn đọc đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2021-2022 của sở GD&ĐT Nghệ An. Đề thi này được thiết kế đặc biệt dành cho các thí sinh muốn thi vào các trường THPT chuyên uy tín tại Nghệ An như trường THPT chuyên Phan Bội Châu và trường THPT chuyên - trường Đại học Vinh. Trích dẫn một số câu hỏi từ đề tuyển sinh: Cho đường tròn (O) có dây cung BC cố định và không đi qua tâm O. Gọi A là điểm di động trên đường tròn (O) sao cho tam giác ABC nhọn và AB < AC. Chứng minh rằng tứ giác BHCE là hình bình hành và HA.HD = HK.HM. Tìm số nguyên dương n để n − 23 n + 89 là bình phương một số hữu tỉ dương. Và còn nhiều câu hỏi thú vị khác đang chờ đón các em thí sinh. Hãy tham gia vào bài thi tuyển sinh này để thử thách năng lực và kiến thức của mình. Chúc các em đạt được kết quả cao trong kỳ thi sắp tới!
Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Tây Ninh
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2021 2022 sở GD ĐT Tây Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Tây Ninh Đề tuyển sinh môn Toán (chuyên) năm 2021-2022 sở GD&ĐT Tây Ninh Chào đón quý thầy cô giáo và các em học sinh, Sytu xin giới thiệu đề tuyển sinh lớp 10 môn Toán (chuyên) năm học 2021-2022 của sở GD&ĐT Tây Ninh. Kỳ thi sẽ diễn ra vào ngày thứ Ba, 08 tháng 06 năm 2021. Dưới đây là một số câu hỏi trích từ đề tuyển sinh: Cho tứ giác ABCD (ABC, BCD là các tam giác nhọn) nội tiếp đường tròn có AC và BD cắt nhau tại E. Gọi M, N và I lần lượt là trung điểm của CD, CE và DE. a) Chứng minh IAE = EBN. b) Gọi J là giao điểm của A và BN; đường thẳng JM cắt AC và BD lần lượt tại K và L. Chứng minh JE là tiếp tuyến của đường tròn ngoại tiếp tam giác EKL. Cho tứ giác ABCD có ABD = 29°; ADB = 41°; DC = 58 và ACB = 82°. Tính ABC. Cho x, y, z là các số thực thỏa mãn 0 < x, y, z < 1. Tìm giá trị lớn nhất của biểu thức T = 2(x³ + y³ + z³) - (x²y + y²z + z²x). Với những câu hỏi thú vị và đa dạng về mặt kiến thức, chúng tôi hy vọng rằng đề tuyển sinh môn Toán sẽ giúp các em học sinh rèn luyện và chuẩn bị tốt cho kỳ thi sắp tới.