Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Quảng Nam

Nội dung Đề tuyển sinh chuyên môn Toán (chuyên) 2022 2023 sở GD ĐT Quảng Nam Bản PDF - Nội dung bài viết Đề thi tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022-2023 sở GD&ĐT Quảng Nam Đề thi tuyển sinh lớp 10 chuyên môn Toán (chuyên) 2022-2023 sở GD&ĐT Quảng Nam Chào mừng quý thầy cô giáo và các em học sinh lớp 9! Bạn đang có dự định vào học tại trường THPT chuyên môn Toán (chuyên Toán) trong năm học mới 2022-2023 tại tỉnh Quảng Nam? Đừng bỏ lỡ cơ hội sở hữu đề thi chính thức kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán sở GD&ĐT Quảng Nam. Đề thi sẽ diễn ra từ ngày 14 đến 16 tháng 06 năm 2022, với đầy đủ đáp án, lời giải chi tiết và thang hướng dẫn chấm điểm. Dưới đây là một số câu hỏi mẫu trong đề thi: 1. Cho tam giác ABC nội tiếp trong đường tròn (O). Dựng đường kính NP của đường tròn (O) vuông góc với BC tại M (P nằm trên cung nhỏ BC). Tia phân giác của ABC cắt AP tại I. Hãy chứng minh rằng PI = PB và IMB = INA. 2. Cho tam giác cân ABC tại A và có tâm đường tròn ngoại tiếp là O. Lấy điểm D bên trong tam giác ABC sao cho BDC = 2BAC (AD không vuông góc với BC). Hãy chứng minh rằng bốn điểm B, C, D, O cùng nằm trên một đường tròn và OD là đường phân giác ngoài của BDC và tổng BD + CD bằng hai lần khoảng cách từ A đến đường thẳng OD. 3. Cho parabol y = x^2 và đường thẳng (d): y = ax + b. Tìm các hệ số của a và b biết rằng đường thẳng (d) đi qua điểm (3, 1/2) và có đúng một điểm chung với parabol. Hãy chuẩn bị tinh thần và kiến thức để hoàn thành tốt kỳ thi tuyển sinh vào trường THPT chuyên môn Toán (chuyên) năm học 2022-2023. Chúc quý thầy cô và các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 06 năm 2023; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Bắc Ninh : + Cho đường tròn tâm O, đường kính BC. Trên đường tròn đã cho lấy điểm A cố định (A khác B, C) và lấy điểm D thay đổi trên cung nhỏ AC (D khác A, C). Kẻ AH vuông góc với BC (H thuộc BC). Hai đường thẳng BD và AH cắt nhau tại I. 1. Chứng minh rằng tứ giác IHCD là tứ giác nội tiếp. 2. Chứng minh rằng AB2 = BI.BD. 3. Lấy điểm M trên đoạn thẳng BC sao cho BM = AB. Chứng minh rằng tâm đường tròn ngoại tiếp △MID luôn nằm trên một đường thẳng cố định khi D thay đổi trên cung nhỏ AC. + Một phòng họp có 165 ghế ngồi được xếp thành các hàng, mỗi hàng có số ghế bằng nhau. Trong một buổi họp có 208 người tham dự họp, do đó ban tổ chức đã kê thêm 1 hàng ghế và mỗi hàng ghế phải xếp nhiều hơn quy định là 2 ghế mới đủ chỗ ngồi. Hỏi lúc đầu, phòng họp có bao nhiêu hàng ghế và mỗi hàng ghế có bao nhiêu ghế? + Cho ba đường thẳng đôi một phân biệt (d1) : y = x + 2; (d2) : y = 2x + 1; (d3) : y = (m2 + 1)x + m (với m là tham số). Giá trị của m để ba đường thẳng trên cùng đi qua một điểm là?
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hà Tĩnh : + Một phòng họp ban đầu có 96 ghế được xếp thành các dãy và số ghế trong mỗi dãy đều bằng nhau. Có một lần phòng họp phải cất bớt 2 dãy ghế và mỗi dãy còn lại xếp thêm 1 ghế (số ghế trong các dãy vẫn bằng nhau) để vừa đủ chỗ ngồi cho 110 đại biểu. Hỏi ban đầu trong phòng họp có bao nhiêu dãy ghế? + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Biết độ dài đoạn AB = 5cm và AH = 4cm. Tính độ dài đoạn BH và diện tích tam giác ABC. + Cho tam giác ABC nhọn. Đường tròn (O) đường kính BC cắt các cạnh AB, AC lần lượt tại D và E (D khác B và E khác C). Gọi H là giao điểm của hai đường thẳng BE và CD. a) Chứng minh ADHE là tứ giác nội tiếp. b) Đường thẳng AH cắt BC tại F và cắt đường tròn (O) tại điểm P (P nằm giữa A và H). Đường thẳng DF cắt đường tròn (O) tại điểm K (K khác D). Gọi M là giao điểm của EK và BC, I là tâm đường tròn ngoại tiếp tam giác HDP. Chứng minh CE2 = BC.MC và ba điểm B, I, P thẳng hàng.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Phú Thọ : + Từ một điểm M nằm ngoài đường tròn (O;R) và thỏa mãn MO = 2R, kẻ hai tiếp tuyến MA, MB với đường tròn (A, B là hai tiếp điểm). Số đo góc AMB bằng? + Một tổ công nhân theo kế hoạch phải sản xuất 140 sản phẩm trong thời gian nhất định, mỗi ngày sản xuất số sản phẩm như nhau. Thực tế mỗi ngày tổ công nhân làm thêm được 8 sản phẩm so với kế hoạch nên hoàn thành kế hoạch sớm hơn 2 ngày. Số sản phẩm phải sản xuất mỗi ngày theo kế hoạch của tổ công nhân là? + Cho đường tròn (O;R) có hai đường kính AB và CD vuông góc với nhau. Lấy điểm M trên cung nhỏ AC (M khác A và C). Gọi P, Q lần lượt là giao điểm của AB với MC và MD. a) Chứng minh rằng tứ giác OMPD nội tiếp. b) Gọi I, J lần lượt là giao điểm của MB với CA và CD. Chứng minh rằng BJ.BM = 2R2. c) Chứng minh rằng tam giác AQI vuông cân. d) Xác định vị trí điểm M để tam giác MQJ có diện tích lớn nhất.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nghệ An; kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Nghệ An : + Một cửa hàng kinh doanh xe đạp nhập về một lô hàng gồm hai loại: loại I có giá 2 triệu đồng/xe và loại II có giá 6 triệu đồng/xe. Biết rằng lô hàng nói trên có 50 xe với tổng số tiền mà cửa hàng phải thanh toán là 160 triệu đồng. Hỏi cửa hàng đã nhập về bao nhiêu xe loại I và bao nhiêu xe loại II? + Bạn An bỏ một viên bi đặc không thấm nước vào một lọ thủy tinh chứa nước dạng hình trụ có bán kính đường tròn đáy bằng 1,5 cm. Biết rằng khi viên bi chìm hoàn toàn trong nước thì nước trong lọ dâng lên thêm 0,5 cm. Tính thể tích viên bi bạn An đã bỏ vào lọ thủy tinh (cho pi = 3,14; xem độ dày của lọ không đáng kể và nước trong lọ không thất thoát ra ngoài). + Cho tam giác nhọn ABC (AB < AC), các đường cao AD, BE, CF (D thuộc BC, E thuộc AC, F thuộc AB) cắt nhau tại H. a) Chứng minh AEHF là tứ giác nội tiếp. b) Gọi O là trung điểm của đoạn thẳng BC, M là giao điểm của tia EF và tia CB. Chứng minh rằng FAD = OFC và OC2 = OD.OM. c) Chứng minh rằng hai đường thẳng MH và AO vuông góc với nhau.