Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2023 phòng GD ĐT Sơn Động Bắc Giang

Nội dung Đề thi thử Toán vào năm 2023 phòng GD ĐT Sơn Động Bắc Giang Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2023 phòng GD ĐT Sơn Động Bắc Giang Đề thi thử Toán vào năm 2023 phòng GD ĐT Sơn Động Bắc Giang Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm 2023 của phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang. Đề thi bao gồm 30% câu hỏi trắc nghiệm và 70% câu hỏi tự luận, thời gian làm bài 120 phút, không tính thời gian nhận đề. Đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Kỳ thi sẽ diễn ra vào ngày thứ Ba, 18 tháng 04 năm 2023. Một công ty sản xuất hàng may mặc phục vụ xuất khẩu cần may 2100 chiếc áo trong một khoảng thời gian nhất định. Để đáp ứng nhanh hơn, họ đã may nhiều hơn 35 áo mỗi ngày. Nhờ vậy, công việc được hoàn thành sớm hơn 3 ngày. Câu hỏi đặt ra là mỗi ngày công ty cần may bao nhiêu chiếc áo? Đề bài tiếp theo yêu cầu chứng minh một số tính chất của tam giác nội tiếp trong đường tròn và của các đường cao, đường trung tuyến của nó. Cần chứng minh rằng các điểm trên đường tròn ngoại tiếp tứ giác nội tiếp là một chuỗi liên tục. Cuối cùng, cần tính tích AK AH trong một đường tròn cho trước. Đề thi này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10. Hy vọng các em sẽ vượt qua thách thức và đạt kết quả tốt trong kỳ thi sắp tới. Chúc các em học tốt và thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên, chọn trên toàn quốc
Sách gồm các đề thi tuyển sinh vào lớp 10 môn Toán của các trường chuyên, chọn từ năm 2000 đến nay. Các đề thi đều có lời giải chi tiết .
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT An Giang
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang gồm 6 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hàm số y = ax + b (a ≠ 0) có đồ thị là đường thẳng d trên mặt phẳng tọa độ Oxy. Viết theo a và b phương trình đường thẳng (d′). Biết rằng (d) và (d′) vuông góc với nhau đồng thời cắt nhau tại một điểm thuộc trục hoành. + Cho tam giác ABC nội tiếp đường tròn O. Biết A = 60 độ; B và C là hai góc nhọn có số đo khác nhau. Vẽ các đường cao BE, CF của tam giác ABC (E, F lần lượt thuộc AC, AB). a. Chứng minh rằng góc BCF và góc BEF bằng nhau. [ads] b. Gọi I là trung điểm của BC. Chứng minh tam giác IEF là tam giác đều. c. Gọi K là trung điểm của EF. Chứng minh rằng IK song song OA. + Trong một hình vành khăn với các bán kính đường tròn là 10R và 8R. Xếp các hình tròn bán kính R tiếp xúc với cả hai đường tròn của hình vành khăn sao cho các hình tròn này không chồng lấn nhau. Hỏi xếp được nhiều nhất bao nhiêu hình tròn như thế?
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT Lạc Thủy - Hòa Bình (Ban A)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT Lạc Thủy – Hòa Bình (Ban A) gồm 25 bài toán theo hình thức điền kết quả.
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Quốc học - TT Huế (chuyên Toán)
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Quốc học – TT Huế (chuyên Toán) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Trong mặt phẳng tọa độ Oxy, cho parabol 2 (P): y = x^2, đường thẳng (d) có hệ số góc k và đi qua điểm M(0;1). Chứng minh rằng với mọi giá trị của k, (d) luôn cắt (P) tại hai điểm phân biệt A và B có hoành độ x1, x2 thỏa điều kiện /x1 – x2/ >= 2. [ads] + Cho đường tròn (O) có tâm O và hai điểm C, D trên (O) sao cho ba điểm C, O, D không thẳng hàng. Gọi Ct là tia đối của tia CD, M là điểm tùy ý trên Ct, M khác C. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm, B thuộc cung nhỏ CD). Gọi I là trung điểm của CD, H là giao điểm của đường thẳng MO và đường thẳng AB. a) Chứng minh tứ giác MAIB nội tiếp. b) Chứng minh đường thẳng AB luôn đi qua một điểm cố định khi M di động trên tia Ct. c) Chứng minh MD/MC = HA^2/HC^2