Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Dương Quảng Hàm Hưng Yên

Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường Dương Quảng Hàm Hưng Yên Bản PDF Sáng thứ Năm ngày 19 tháng 12 năm 2019, trường THPT Dương Quảng Hàm, tỉnh Hưng Yên tổ chức kì thi kiểm tra chất lượng học kì 1 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Dương Quảng Hàm – Hưng Yên (mã đề 001 và mã đề 133) gồm có 04 trang, đề được biên soạn theo dạng trắc nghiệm khách quan kết hợp tự luận, phần trắc nghiệm gồm 30 câu, chiếm 60% tổng số điểm, phần tự luận gồm 04 câu, chiếm 40% tổng số điểm, học sinh có 90 phút để hoàn thành bài thi HKI Toán lớp 11, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường Dương Quảng Hàm – Hưng Yên : + Cho tứ diện ABCD. Gọi M, N, P, Q là bốn điểm lần lượt lấy trên bốn cạnh AB, BC, CD, DA sao cho bốn điểm này không trùng với đỉnh của tứ diện và đồng phẳng. Khẳng định nào sau đây sai? A. Ba đường thẳng MQ, PN, BD đồng quy hoặc đôi một song song. B. MN cắt BD. C. Ba đường thẳng MN, PQ, AC đồng quy hoặc đôi một song song. D. Tứ diện ABCD có 6 cạnh. [ads] + Cho hình thoi ABCD tâm O. Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. Phép vị tự tâm O, tỷ số k = −1 biến tam giác ABD thành tam giác CDB. B. Phép tịnh tiến theo vectơ AD biến tam giác ABD thành tam giác DCB. C. Phép quay tâm O, góc π/2 biến tam giác OBC thành tam giác OCD. D. Phép vị tự tâm O, tỷ số k = 1 biến tam giác OBC thành tam giác ODA. + Cho hình chóp S.ABCD có đáy ABCD là hình thang với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC. a. Tìm giao tuyến của hai mặt phẳng (AMN) và (ABCD). b. Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Tân Phong TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Tân Phong TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Tân Phong, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Tân Phong – TP HCM : + Từ 9 học sinh gồm 5 nam và 4 nữ. Chọn ngẫu nhiên 6 học sinh xếp thành hàng ngang. Tính xác suất để không có 2 nam sinh đứng cạnh nhau. + Có 7 phiếu bốc thăm, trong đó có 3 phiếu trúng quà. Ông An được phép bốc 3 phiếu. Tính xác suất để ông An được 2 phiếu trúng quà. + Một lớp học có 20 học sinh nam và 19 học sinh nữ. Hỏi có bao nhiêu cách để chọn ra 1 cặp song ca gồm 1 học sinh nam và 1 học sinh nữ?
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Lương Thế Vinh TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Lương Thế Vinh TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Lương Thế Vinh, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Lương Thế Vinh – TP HCM : + Từ tập hợp X = {0; 1; 2; 3; 4; 5} có thể lập được bao nhiêu số tự nhiên lẻ có 4 chữ số khác nhau? + Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ, 7 viên bi vàng. Lấy ngẫu nhiên 8 viên bi. Tính xác suất của biến cố A: “Các bi được chọn có đúng có 2 màu”. + Lớp 11A có 21 học sinh giỏi Toán, 16 học sinh giỏi Lý, 11 em không giỏi Toán và cũng không giỏi Lý. Chọn 2 em học sinh để tham gia dự án, tính xác suất của biến cố B: “Chọn được 2 em giỏi cả hai môn Toán và Lý”, biết lớp có 40 học sinh.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Mạc Đĩnh Chi TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Mạc Đĩnh Chi TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Mạc Đĩnh Chi, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Mạc Đĩnh Chi – TP HCM : + Trong kỳ thi học kỳ 1, phòng thi số 1 có 24 học sinh trong đó có 4 học sinh tên An, Bảo, Cường, Danh. Trong phòng thi có 24 bàn xếp thành 4 dãy theo hàng dọc, mỗi dãy có 6 bàn. Giám thị phòng thi bố trí cho các học sinh ngồi ngẫu nhiên vào 24 bàn, mỗi bàn 1 học sinh. Tính xác suất 4 bạn có tên trên ngồi cạnh nhau theo cùng một hàng dọc. + Xác suất ném bóng vào rổ thành công trong mỗi lần ném của bốn học sinh An, Bảo, Cường, Danh lần lượt là 0.5, 0.6, 0.7, 0.8. Cho mỗi học sinh trên ném bóng vào rổ 1 lần. Tính xác suất có ít nhất một người ném thành công. + Trên một đường tròn cho n điểm phân biệt. Biết số tam giác có 3 đỉnh lấy từ n điểm này nhiều hơn số đoạn thẳng có 2 đầu mút cũng được lấy từ n điểm này là 75. Tìm n.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Marie Curie TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Marie Curie TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Marie Curie, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Marie Curie – TP HCM : + Trường X tổ chức kiểm tra tập trung 3 môn Toán, Văn và Ngoại ngữ cho học sinh khối 11 trong thời gian một tuần (không tổ chức kiểm tra vào ngày chủ nhật). Biết rằng mỗi ngày học sinh chỉ kiểm tra một môn. Tính xác suất để môn Toán kiểm tra đầu tiên và các môn không kiểm tra vào hai ngày liên tiếp nhau. + Lớp 11A có 30 học sinh trong đó có 20 nam và 10 nữ. Có bao nhiêu cách chọn ra một nhóm 7 học sinh của lớp 11A gồm 4 học sinh nam và 3 học sinh nữ? + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của SB, OC và SD. a) Chứng minh đường thẳng MP song song với mặt phẳng (ABCD). b) Tìm giao tuyến của mặt phẳng (MNP) và mặt phẳng (ABCD). c) Tìm thiết diện tạo bởi mặt phẳng (MNP) và hình chóp S.ABCD.