Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra cuối học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 sở GD ĐT Kiên Giang

Nội dung Đề kiểm tra cuối học kì 1 (HK1) lớp 10 môn Toán năm 2023 2024 sở GD ĐT Kiên Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra cuối học kỳ 1 môn Toán lớp 10 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Kiên Giang; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 103 105 107 109. Trích dẫn Đề kiểm tra cuối học kỳ 1 Toán lớp 10 năm 2023 – 2024 sở GD&ĐT Kiên Giang : + Thống kê GDP năm 2022 (đơn vị: tỉ USD) của 10 nước tại khu vực Đông Nam Á được kết quả đã làm tròn như sau: Singapore Indonesia Thái Lan Malaysia Việt Nam 421 1278 491 382 400 Philipines Myanmar Campuchia Brunei Lào 397 61 29 18 15. Từ bảng số liệu trên, khẳng định nào dưới đây là đúng? A. Việt Nam không thuộc nhóm 25% quốc gia trong khu vực Đông Nam Á có GDP cao nhất. B. Việt Nam thuộc nhóm 25% quốc gia trong khu vực Đông Nam Á có GDP cao nhất. C. Việt Nam thuộc nhóm 25% quốc gia trong khu vực Đông Nam Á có GDP thấp nhất. D. Việt Nam không thuộc nhóm 50% quốc gia trong khu vực Đông Nam Á có GDP cao nhất. + Hai ca nô A và B chạy trên sông với các vận tốc riêng có cùng độ lớn là 10 km/h. Tuy vậy, ca nô A chạy xuôi dòng còn ca nô B chạy ngược dòng, vận tốc của dòng nước trên sông là 2 km/h. Gọi a b v v lần lượt là vectơ vận tốc thực tế của ca nô A và ca nô B. Khẳng định nào dưới đây đúng? + Bác Năm dự định trồng khoai lang và khoai mì trên mảnh đất có diện tích 8 ha. Nếu trồng 1 ha khoai lang thì cần 10 ngày công và thu được 20 triệu đồng. Nếu trồng 1 ha khoai mì thì cần 15 ngày công và thu được 25 triệu đồng. Biết rằng, bác Năm chỉ có thể sử dụng được không quá 90 ngày công cho việc trồng khoai lang và khoai mì. Bác Năm cần trồng bao nhiêu ha cho mỗi loại cây để thu được nhiều tiền nhất? A. 8 ha khoai lang và 0 ha khoai mì. B. 3 ha khoai lang và 5 ha khoai mì. C. 6 ha khoai lang và 2 ha khoai mì. D. 4 ha khoai lang và 4 khoai mì. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kỳ 1 Toán 10 năm học 2017 - 2018 trường THPT Lê Quý Đôn - Hải Phòng
Đề thi học kỳ 1 Toán 10 năm học 2017 – 2018 trường THPT Lê Quý Đôn – Hải Phòng gồm 40 câu hỏi trắc nghiệm và 2 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 10 : + Cho tam giác ABC. Tập hợp điểm M thỏa mãn |vtMA + vtMB| = 2|vtAC| là: A. Đường trung trực của đoạn AC B. Đường tròn tâm I bán kính R = AC với I là trung điểm AB C. Đường trung trực của đoạn BC D. Đường tròn tâm I bán kính ܴR = AC với I là trung điểm BC [ads] + Trong các mệnh đề sau, mệnh đề nào là mệnh đề sai? A. Một tam giác là tam giác vuông khi và chỉ khi nó có 1 góc bằng tổng 2 góc còn lại B. Phương trình x^2 + 1 = 0 vô nghiệm C. Tứ giác có 2 đường chéo vuông góc thì tứ giác đó là hình thoi D. 4 là số nguyên dương + Trong các phép biến đổi sau,phép nào không là phép biển đổi tương đương? A. Bình phương 2 vế của 1 phương trình B. Chuyển vế và đổi dấu 1 biểu thức trong phương trình C. Nhân hoặc chia 2 vế của 1 phương trình với 1 biểu thức luôn có giá trị khác 0 D. Cộng hay trừ 2 vế của 1 phương trình với cùng 1 số
Đề thi HK1 Toán 10 năm học 2017 - 2018 trường THPT Lê Văn Hưu - Thanh Hóa
Đề thi HK1 Toán 10 năm học 2017 – 2018 trường THPT Lê Văn Hưu – Thanh Hóa gồm 25 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi HK1 Toán 10 : + Máy tính bỏ túi được bán cho học sinh với giá 400.000 đồng mỗi chiếc. Ba trăm học sinh sẵn sàng mua ở mức giá đó. Khi giá bán mỗi chiếc tăng thêm 100.000 đồng, có ít hơn 30 học sinh sẵn sàng mua ở mức giá đó. Hỏi giá bán mỗi chiếc máy tính bỏ túi bằng bao nhiêu sẽ tạo doanh thu tối đa? A. 600.000 đồng. B. 700.000 đồng. C. 1.000.000 đồng. D. 500.000 đồng. [ads] + Trong các mệnh đề sau, mệnh đề nào sai? A. “∃x ∈ R, x^2 + 1 > 0” B. “Mọi tứ giác có hai đường chéo vuông góc đều là hình thoi” C. “∀x ∈ R, x^2 + 1 ≥ 0” D. “Mọi hình thoi đều có hai đường chéo vuông góc” + Cho parabol (P): y = x^2 + ax + b đi qua M(-1;8) và N(2;-1) a. Tìm a, b b. Tìm m để đường thẳng (d): y = -2x + m cắt (P) tại hai điểm phân biệt A, B sao cho tam giác IAB vuông tại I(-1;0)
Đề thi học kỳ 1 Toán 10 chuyên năm học 2017 - 2018 trường THPT chuyên Hà Nội - Amsterdam
Đề thi học kỳ 1 Toán 10 chuyên năm học 2017 – 2018 trường THPT chuyên Hà Nội – Amsterdam gồm 6 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi học kỳ 1 Toán 10 : + Cho tam giác ABC có góc A = 60 độ, AC = b, AB = c. Gọi M, N là các điểm thỏa mãn các biểu thức vectơ MA – 2NC = 6NA – 3MB, MA + 3MB = -(NC + 3NA). a. Xác định vị trí của các điểm M, N b. Tìm tập hợp điểm P thỏa mãn |PA + PB + PC| = |PM + PN| c. Tìm điều kiện của b, c để BN ⊥ CM [ads] + Có bao nhiêu cách sắp xếp 20 viên bi giống nhau vào 3 hộp sao cho hộp nào cũng có bi? Nếu 20 viên bi đó đôi một khác nhau thì có bao nhiêu cách sắp xếp? + Cho 2018 số nguyên dương không lớn hơn 2018 có tổng bằng 4036. Hỏi từ các số này có thể chọn được ít nhất một bộ các số có tổng bằng 2018 hay không?
Đề thi HK1 Toán 10 năm học 2017 - 2018 trường THPT Hậu Lộc 4 - Thanh Hóa
Đề thi HK1 Toán 10 năm học 2017 – 2018 trường THPT Hậu Lộc 4 – Thanh Hóa gồm 12 câu hỏi trắc nghiệm và 5 bài toán tự luận, thời gian làm bài 60 phút, đề thi có đáp án và lời giải chi tiết . Nội dung đề thi thuộc các chủ đề: + Mệnh đề và tập hợp: Gồm 3 câu hỏi trắc nghiệm, đây là các câu hỏi với mức độ dễ giúp học sinh dễ dàng có điểm + Hàm số bậc nhất và hàm số bậc hai: Gồm 3 câu hỏi trắc nghiệm và 1 bài toán tự luận, các câu hỏi thuộc phần này cũng là các câu hỏi cơ bản, không khó + Phương trình và hệ phương trình: Gồm 2 câu hỏi trắc nghiệm và 3 bài toán tự luận, một số câu hỏi trong phần này dùng để phân loại điểm 9, 10 + Vectơ và các phép toán: Gồm 4 câu hỏi trắc nghiệm và một bài toán tự luận, các bài toán trong phần này cũng không quá khó [ads] Trích dẫn đề thi HK1 Toán 10 : + Cho hàm số y = ax^2 + bx + c có đồ thị như hình vẽ bên dưới. Mệnh đề nào sau đây đúng? A. a > 0, b < 0, c > 0 B. a > 0, b > 0, c > 0 C. a > 0, b = 0, c > 0 D. a < 0, b > 0, c > 0 + Trong mặt phẳng với hệ tọa độ Oxy, Cho tam giác ABC có A(2;1), B(-1;-2), C (-3;2). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành. + Cho tam giác ABC. Gọi M, N là các điểm thỏa mãn: vtAM = 1/3.vtAB, vtCN = 2.vtBC. Chứng minh rằng: vtMN = -7/3.vtAB + 3.vtAC