Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT chuyên Hùng Vương Phú Thọ

Nội dung Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT chuyên Hùng Vương Phú Thọ Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng lần 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ; kỳ thi được diễn ra vào ngày 29 tháng 11 năm 2023; đề thi có đáp án trắc nghiệm mã đề 111 – 112 – 113 – 114. Trích dẫn Đề khảo sát lần 1 Toán lớp 11 năm 2023 – 2024 trường chuyên Hùng Vương – Phú Thọ : + Một phân xưởng may áo vest và quần âu để chuẩn bị cho dịp cuối năm. Biết may 1 áo vest hết 2m vải và cần 20 giờ; 1 quần âu hết 1,5m vải và cần 5 giờ. Xí nghiệp được giao sử dụng không quá 900m vải và số giờ công không vượt quá 6000 giờ. Theo khảo sát thị trường, số lượng quần bán ra không nhỏ hơn số lượng áo và không vượt quá 2 lần số lượng áo. Khi xuất ra thị trường, 1 chiếc áo lãi 350 nghìn đồng, 1 chiếc quần lãi 100 nghìn đồng. Tiền lãi cao nhất phân xưởng thu được dịp cuối năm đó là (biết thị trường tiêu thụ luôn đón nhận sản phẩm của xí nghiệp). + Trong các mệnh đề sau, mệnh đề nào đúng? A. Hai đường thẳng song song khi và chỉ khi chúng ở trên cùng một mặt phẳng. B. Hai đường thẳng chéo nhau khi và chỉ khi chúng không có điểm chung. C. Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo nhau. D. Khi hai đường thẳng ở trên hai mặt phẳng thì hai đường thẳng đó chéo nhau. + Các bệnh truyền nhiễm có thể lây lan rất nhanh. Giả sử có 5 người bị bệnh trong tuần đầu tiên của một đợt dịch, và mỗi người bị bệnh sẽ lây bệnh cho bốn người vào cuối tuần tiếp theo. Tính đến hết tuần thứ 10 của đợt dịch, có bao nhiêu người đã bị lây bởi căn bệnh này? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 11 chuyên năm 2022 - 2023 sở GDĐT Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 THPT chuyên năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 11 chuyên năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Có n (n ≥ 2) đội bóng tham gia một giải đấu bóng đá theo thể thức đá vòng tròn một lượt. Mỗi trận có kết quả là hòa hoặc phân thắng thua. Nếu kết quả hoà thì mỗi đội đều được 1 điểm. Nếu kết quả phân thắng thua thì đội thắng được 3 điểm, đội thua được 0 điểm. Gọi h là hiệu số điểm của đội đứng đầu bảng và đội đứng cuối bảng. Nếu chỉ xét các tình huống sau khi giải đấu kết thúc không có hai đội nào bằng điểm nhau thì giá trị nhỏ nhất có thể của h là bao nhiêu trong các trường hợp: a. Số đội tham dự là n = 3. b. Số đội tham dự là n = 42. + Cho P x là đa thức bậc 2023 với các hệ số thực không âm. Giả sử abc là độ dài ba cạnh của một tam giác nhọn. Chứng minh rằng các số 2023 2023 2023 Pa Pb Pc cũng là độ dài ba cạnh của một tam giác nhọn. + Cho đường tròn (O) và dây cung BC cố định trên (O). Một điểm A thay đổi trên (O) sao cho tam giác ABC nhọn và AB BC. Các đường cao AD BE CF của tam giác ABC cắt nhau tại H. Gọi M N lần lượt là trung điểm của AC và BC. Gọi Q là điểm đối xứng với B qua O. Đường thẳng QM cắt BC tại P và cắt (O) tại R. Đường tròn ngoại tiếp tam giác BRP cắt BQ tại S. a. Chứng minh CH là trục đẳng phương của các đường tròn đường kính BM và AN. b. Chứng minh các điểm SFR thẳng hàng và đường thẳng MF đi qua một điểm cố định khi A thay đổi.
Đề Olympic 30 tháng 4 Toán 11 năm 2023 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic truyền thống 30 tháng 4 môn Toán 11 lần thứ XXVII năm 2023 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Bảy ngày 08 tháng 04 năm 2023. Trích dẫn Đề Olympic 30 tháng 4 Toán 11 năm 2023 trường chuyên Lê Hồng Phong – TP HCM : + Cho p là số nguyên tố có dạng 20n + 7. Gọi S là tập hợp tất cả các số nguyên dương có thể biểu diễn dưới dạng a2 + 5b2 với a và b là hai số nguyên tố cùng nhau. a. Chứng minh rằng tồn tại số nguyên dương k sao cho kp thuộc S. b. Tìm số nguyên dương k0 nhỏ nhất sao cho k0p thuộc S. + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O;R). Các đường phân giác trong BX, CY của tam giác ABC cắt nhau tại I. J là trung điểm cung nhỏ BC của(O;R). Đường thẳng XY cắt các đường thẳng AI, BC lần lượt tại L, T. a. Chứng minh. b. Chứng minh đường thẳng qua I vuông góc với XY cắt đường thẳng OJ tại điểm O’ đối xứng với điểm O qua điểm J. c. Đường tròn nội tiếp (I) của tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi G là điểm đối xứng của D qua đường thẳng EF. Biết các đường thẳng DL, AG cắt nhau tại W, chứng minh WI vuông góc với XY. + Cho a < b < c là ba nghiệm thực của phương trình 8×3 – 4×2 – 4x + 1 = 0. a. Lập phương trình bậc ba có 3 nghiệm là 1 – 2a2, 1 – 2b2, 1 – 2c2. b. Chứng minh rằng: 2a2 + b = 2b2 + c = 2c2 + a = 1.
Đề học sinh giỏi Toán 11 cấp tỉnh năm 2022 - 2023 sở GDĐT Bình Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán 11 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Bình Định : + Cho dãy số (un) xác định bởi: u1 = 1; u2 = 4; un+2 = 7un+1 – un – 2 với mọi n thuộc N*. Chứng minh mọi số hạng un của dãy đều là số chính phương. Gọi S là tập hợp tất cả các số tự nhiên có tám chữ số đôi một khác nhau. Chọn ngẫu nhiên một số trong tập S. Tính xác suất để số được chọn chia hết cho 45. + Cho tam giác ABC nội tiếp trong đường tròn tâm O. Một đường tròn tâm J tiếp xúc với hai cạnh CA, CB lần lượt tại D, E và tiếp xúc trong với đường tròn (O) tại F. Gọi P, Q lần lượt là giao điểm thứ hai của FD, FE với đường tròn (O). Chứng minh rằng các đường thẳng AQ, BP, DE đồng quy tại tâm đường tròn nội tiếp tam giác ABC. + Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABC và M là một điểm bất kỳ thuộc miền trong tam giác ABC, M khác G và MG không song song với cạnh nào của tam giác ABC. Đường thẳng qua M song song DG cắt các mặt phẳng (DBC), (DCA), (DAB) lần lượt ở A’, B’, C’. Chứng minh rằng: DA’ + DB’ + DC’ > 3GM.
Đề học sinh giỏi Toán 11 năm 2022 - 2023 cụm Tân Yên - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa cấp cơ sở môn Toán 11 năm học 2022 – 2023 cụm Tân Yên, tỉnh Bắc Giang; đề thi mã đề 107, hình thức 70% trắc nghiệm (40 câu – 14 điểm) kết hợp 30% tự luận (03 câu – 06 điểm), thời gian làm bài: 120 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 11 năm 2022 – 2023 cụm Tân Yên – Bắc Giang : + Trong mặt phẳng Oxy, cho A 2 2 B 4 4. Gọi C và C lần lượt là đường tròn đường kính OA và đường tròn đường kính OB, d là đường thẳng đi qua O cắt đường tròn C ở M, cắt đường tròn C ở N sao cho ON OM M N 3. Phương trình đường thẳng d ax by c 0. Tỉ số a b là? + Cho đường tròn tâm O, bán kính R và điểm A cố định nằm trên đường tròn đó. Một dây cung MN thay đổi của đường tròn O R sao cho 2 R MN. Trọng tâm của tam giác AMN nằm trên một đường (H) cố định. Mệnh đề nào dưới đây đúng? A. (H) là đường tròn có bán kính bằng 3 4 R. B. (H) là một đường thẳng. C. (H) là đường tròn có bán kính bằng 5 6 R. D. (H) là đường tròn có bán kính bằng 15 6 R. + Ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, cũng có thể coi là số hạng thứ 2, thứ 9, thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu tiên của cấp số cộng này để tổng của chúng bằng 820?