Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề cực trị Hình học 9

Tài liệu gồm 21 trang hướng dẫn phương pháp giải bài toán cực trị Hình học 9, đây là lớp các bài toán nâng cao trong đề thi Toán 9 và đề tuyển sinh vào lớp 10 môn Toán. A – Phương pháp giải bài toán cực trị hình học 1- Dạng chung của bài toán cực trị hình học Trong tất cả các hình có chung một tính chất , tìm những hình mà một đại lượng nào đó (độ dài đoạn thẳng , số đo góc, số đo diện tích …) có giá trị lớn nhất hoặc giá trị nhỏ nhất.” và có thể được cho dưới các dạng: a) Bài toán về dựng hình Ví dụ : Cho đường tròn (O) và điểm P nằm trong đường tròn, xác định vị trí của dây đi qua điểm P sao cho dây đó có độ dài nhỏ nhất. b) Bài toán vể chứng minh  Ví dụ : Chứng minh rằng trong các dây đi qua điểm P trong một đường tròn (O), dây vuông góc với OP có độ dài nhỏ nhất. c) Bài toán về tính toán Ví dụ : Cho đường tròn (O;R) và điểm P nằm trong đường tròn có OP = h. Tính độ dài nhỏ nhất của dây đi qua P. 2 – Hướng giải bài toán cực trị hình học a) Khi tìm vị trí của hình H trên miền D sao cho biểu thức f có giá trị lớn nhất ta phải chứng tỏ được: + Với mọi vị trí của hình H trên miền D thì f ≤ m (m là hằng số) + Xác định vị trí của hình H trên miền D sao cho f = m b) Khi tìm vị trí của hình H trên miền D sao cho biểu thức f có giá trị nhỏ nhất ta phải chứng tỏ được: + Với mọi vị trí của hình H trên miền D thì f ≥ m (m là hằng số) + Xác định vị trí của hình H trên miền D để f = m [ads] 3 – Cách trình bày lời giải bài toán cực trị hình học + Cách 1 :Trong các hình có tính chất của đề bài,chỉ ra một hình rồi chứng minh mọi hình khác đều có giá trị của đại lượng phải tìm cực trị nhỏ hơn (hoặc lớn hơn) giá trị của đại lượng đó của hình đã chỉ ra. + Cách 2 : Biến đổi tương đương điều kiện để đại lượng này đạt cực trị bởi đại lượng khác đạt cực trị cho đến khi trả lời được câu hỏi mà đề bài yêu cầu. B – Các kiến thức thường dùng giải bài toán cực trị hình học 1 – Sử dụng quan hệ giữa đường vuông góc, đường xiên, hình chiếu 2 – Sử dụng quan hệ giữa đường thẳng và đường gấp khúc 3 – Sử dụng các bất đẳng thức trong đường tròn 4 – Sử dụng bất đẳng thức về lũy thừa bậc hai 5 – Sử dụng bất đẳng thức Cô-si 6 – Sử dụng tỉ số lượng giác C – Bài tập cực trị hình học 9 có lời giải chi tiết

Nguồn: toanmath.com

Đọc Sách

Chuyên đề vị trí tương đối của đường thẳng và đường tròn
Tài liệu gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề vị trí tương đối của đường thẳng và đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 4. A. KIẾN THỨC CẦN NHỚ + Vị trí tương đối. + Tính chất của tiếp tuyến. + Tính chất hai tiếp tuyến cắt nhau. + Đường tròn nội tiếp tam giác. + Đường tròn bàng tiếp tam giác. B. CÁC DẠNG BÀI TẬP TỰ LUẬN MINH HỌA Dạng 1: Nhận biết vị trí tương đối của đường thẳng và đường tròn. Dạng 2: Bài tập vận dụng tính chất tiếp tuyến. Dạng 3: Chứng minh tiếp tuyến của đường tròn. Dạng 4: Nâng cao phát triển tư duy. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN
Chuyên đề đường kính và dây cung của đường tròn
Tài liệu gồm 29 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề đường kính và dây cung của đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 2 và bài số 3. A. TÓM TẮT LÝ THUYẾT Đường kính và dây của đường tròn: Trong các dây của đường tròn, dây lớn nhất là đường kính. Quan hệ vuông góc giữa đường kính và dây: + Trong một đường tròn, đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy. + Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy. Liên hệ khoảng cách từ tâm đến dây: Trong một đường tròn: + Hai dây bằng nhau thì cách đều tâm. + Hai dây cách đều tâm thì bằng nhau. Trong hai dây của một đường tròn: + Dây nào lớn hơn thì dây đó gần tâm hơn. + Dây nào gần tâm hơn thì dây đó lớn hơn. B. CÁC DẠNG BÀI TỰ LUẬN MINH HỌA Dạng 1: Các bài toán liên quan đến tính toán trong đường tròn. Dạng 2: Chứng minh hai đoạn thẳng không bằng nhau. Dạng 3: Chứng minh hai đoạn thẳng bằng nhau. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề sự xác định đường tròn tính chất đối xứng của đường tròn
Tài liệu gồm 32 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề sự xác định đường tròn – tính chất đối xứng của đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 1. A. KIẾN THỨC CẦN NHỚ + Đường tròn. + Vị trí tương đối. + Cách xác định đường tròn. + Tính chất đối xứng. + Độ dài đường tròn và diện tích hình tròn. + Đường kính và dây của đường tròn. + Liên hệ khoảng cách từ tâm đến dây. B. CÁC DẠNG BÀI CƠ BẢN Dạng 1: Tính độ dài đường tròn và diện tích hình tròn. Dạng 2: Chứng minh các điểm cùng thuộc một đường tròn. Dạng 3: Đường kính và dây của đường tròn. Liên hệ khoảng cách từ tâm đến dây. C. CÁC BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY + Chứng minh nhiều điểm cùng thuộc một đường tròn. + Chứng minh một điểm thuộc một đường tròn cố định. + Dựng đường tròn. + Các dạng toán khác. D. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ
Chuyên đề tính diện tích tam giác, diện tích tứ giác nhờ sử dụng các tỉ số lượng giác
Tài liệu gồm 14 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề tính diện tích tam giác, diện tích tứ giác nhờ sử dụng các tỉ số lượng giác, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1 bài số 4. A. KIẾN THỨC CẦN NHỚ Ta đã biết cách tính diện tích tam giác theo một công thức rất quen thuộc là S = 1/2ah, trong đó a là độ dài một cạnh của tam giác, h là chiều cao ứng với cạnh đó. Bây giờ ta vận dụng các tỉ số lượng giác, các hệ thức về cạnh và góc trong tam giác vuông để xây dựng thêm các công thức tính diện tích tam giác, tứ giác. B. BÀI TẬP MINH HỌA C. BÀI TẬP TỰ LUYỆN + Tính diện tích. + Chứng minh các hệ thức. + Tính số đo góc. + Tính độ dài. D. HƯỚNG DẪN GIẢI